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CHAPTER 1. GENERAL INTRODUCTION 

1. Introduction 

Accurate ionization energies (lE's) for molecular species are used for prediction of 

chemical reactivity and are of fundamental importance to chemists.'"^ The IE of a gaseous 

molecule can be determined routinely in a photionization^ or a photoelectron '̂'* experiment. 

IE determinations made in conventional photoionization and photoelectron studies have 

imcertainties in the range of 3-100 meV (25-250 cm"'). 

In the past decade, the most exciting development in the field of photoionization and 

photoelectron spectroscopy has been the availability of high resolution, tunable ultraviolet 

(UV) and vacuum ultraviolet (VUV) laser sources.^*' The laser pulsed field ionization 

photoelectron (PFI-PE) scheme is currently the state-of-the-art photoelectron spectroscopic 

technique and is capable of providing photoelectron energy resolution close to the optical 

8 in 
resolution." For specific molecular species with IE values below 12 eV, the non-resonant 

two-photon (N2P) PFI-PE scheme involving the use of a UV laser is an attractive method for 

high resolution photoelectron measurements."*'̂  Without doubt, the single-photon PFI-PE 

technique is the most versatile high-resolution photoelectron spectroscopic method. At the 

current technical level, VUV laser radiation with usable intensity can be generated at energies 

up to =sl7.7 eV by nonlinear optical mixing using commercial dye lasers.^ 

In my PhD study, I have focused my attention on the photoionization processes of 

some sulfur-containing species. The studies of the photoionization and photodissociation on 

sulfur-containing compounds [such as CHaSSCHa,'̂ ''*'" 
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CH3CH2SCH2CH3,^° HSCHiCHiSH '̂ and C4H4S (thiophene)^ and sulfur-containing 

radicals, such as HS,^ CS,'̂  CHsCHaS^® and CH3SS,"] have been the major 

subjects in our group because sulfur is an important species contributing to air pollution in 

the atmosphere. The modeling of the combustion and oxidation of sulfur compounds 

represents important steps for the control of both the production and the elimination of 

sulfur-containing pollutants. 

Particularly, N2P-PFI-PE studies have been performed on some of the sulfur-

containing species with the photoionization apparatus in our laboratory. As a continuation, 1 

have employed similar techniques to study the photoionization of CH3SH and CH3CH2SH 

(see Ch^ter 2), CH3SCH3 (see Chapter 6) and to probe the CH3CH2S radical generated in the 

photodissociation of CH3CH2SH (see Chapter 3). 

I have also modified the apparatus to generate VUV laser light. A single VUV photon 

has enough energy to ionize a molecule and hence single-photon ionization can be studied. 

The modified apparatus has been used to study the VUV single-photon ionization of CS2 (see 

Chapter 4), CH3SH and CH3CH2SH (see Chapter 5) and CH3SCH3 (see Chapter 6). 

Photoionization mainly provides information on the EE of the neutral species and the energy 

levels (e.g. vibrational energy levels) of the neutral and cationic species. When appropriate, 

ab initio calculations have also been performed (mostly by myself, sometimes by 

collaborators). The theoretical results are usually very helpful in interpreting the 

experimental data. 

To enhance the ability of the VUV laser technique, a much more sophisticated 

apparatus is under construction and I have been involved in its design and fabrication. 
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Although the construction is not finished, the critical parts of the new apparatus have been 

completed and are fimctioning very well. When operating, the new apparatus is expected to 

provide many new and interesting research opportunities. It will be introduced in Chapter 7 

v^ere the progress is reported. 

2. Dissertation Organization 

This dissertation consists of seven chapters, each of which has its own numbering 

system for equations, tables, figures and references. 

Chapter 1 is a general mtroduction of the thesis. Chapters 2 to 6 contain five papers 

published in, or accepted for publication in, academic periodicals. Each paper is presented in 

accordance with the requirements of the periodical to which it was submitted. Because they 

were submitted to different periodicals, the formats between the papers may be different. 

Chapters 2 and 3 contain the N2P-PFI-PE spectroscopic studies of CHaSH,^^ CH3CH2SH^® 

and CH3CH2S radical formed in the photodissociation of CHsCHiSH.^^ Chapters 4 and 5 

contain the VUV single-photon PFI-PE spectroscopic smdies of CS2,^* CHbSH '̂ and 

CHsCHaSH. '̂ Chapter 6 contains the PFI-PE spectroscopic study of CH3SCH3 using N2P 

and VUV single-photon ionizations.^" 

In Chapter 7, the progress of the construction in our laboratory of a new vacuirai 

ultraviolet laser system equipped with a reflectron mass spectrometer is presented. A general 

conclusion of these studies are given in Chapter 8 followed by an appendix. 
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3. Literature Review 

The use of lasers in photoionization is relatively old. The first multi-photon ionization 

(MPI) experiments on gaseous atoms were performed in 1966 by Voronov and Delone. '̂ 

The MPI technique is still a very important and popular tool in spectroscopic studies due to 

its simple experimental setup. On the other hand, single VUV photon ionization studies in 

the past have relied mainly on discharge lamps As commercial lasers have become more 

and more powerfiil, the use of VUV laser systems becomes possible and affordable. In fact, 

some research groups in the world have constructed their own VUV laser systems for 

photoionization studies.^*^"^^^^ 

Parallel to the development of high power laser sources, technical progress has also 

been made in high-resolution photoelectron spectroscopy. With the introduction of the laser 

PFI-PE method,''the energy resolution for photoelectron spectroscopy has been improved 

to sub-wavenumbers, ^proaching that achieved in optical spectroscopy. 

In spite of these technical advances, few organosulfur compoimds have been smdied. 

Only conventional photoionization or photoelectron techniques have been used to study 

CHjCHzStr' and 

On the other hand, the simpler and synmietric linear organosvilfiir molecule, CSi, has 

been studied in a munber of high-resolution photoionization efficiency (PEE)'̂ '*^ and 

photoelectron spectroscopy experiments. The two approaches, however, have led to a 

discrepancy in the value of IE[CS2^( X ^Tha,\a!)\- This discrepancy is most likely caused by the 

Stark field ionization effect''̂  Furthermore, the IE[CS2^(^ni/2)] value deduced by the previous 
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Rydberg series analysis'*^ is not in agreement with those of the and photoelectron 

spectroscopy^^^ '̂ studies. 

Based on the vacuum uhraviolet (VUV) photoionization mass spectrometric sampling 

of photoproducts formed in the 193-nm photodissociation of CH3CH2SCH2CH3, Ma et al. 

conclude that the CH3CH2S radical is predominantly produced in such a photochemical 

process.^" In a recent laser induced fluorescence study'*®, CH3CH2S is also shown to be the 

predominant product in the 248-nm laser photodissociation of CH3CH2SH. 
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CHAPTER 2. NONRESONANT TWO-PHOTON PULSED FIELD 
IONIZATION PHOTOELECTRON SPECTROSCOPIC STUDY OF 

CH3SH AND CH3CH2SH 

A p^jer published in the Ihtemational Journal of Mass Spectrometry and Ion Processes 

Y.-S. Cheung, C.-W. Hsu, J.-C. Huang, C. Y. Ng, W.-K. Li and S.-W. Chiu 

Abstract 

The threshold photoelectron spectra for CH3SH and CH3CH2SH in the photon energy 

regions of 75 600—77 400 and 74 600-76 400 cm*', respectively, have been measured using the 

nonresonant two-photon pulsed field ionization photoelectron (N2P-PFI-PE) spectroscopic 

technique. The respective ionization energies (lEs) for CH3SH and CH3CH2SH are determined 

to be 76 302 ± 5 cm*' (9.4602 ± 0.0006 eV) and 74 943 ± 5 cm"' (9.2918 ± 0.0006 eV). The 

theoretical lEs of 9.46 eV for CH3SH and 9.30 eV for CH3CH2SH obtained by the Gaussian-2 

(G2) procedure are in excellent agreement with the experimental values. Ab initio calculations 

for CH3CH2SH and CH3CH2SH^ at the G2 level indicate that both CH3CH2SH and 

CH3CH2SH^ exist as a gauche- or a /rony-conformer with the gOMc/ie-conformer slightly more 

stable. Comparison of the experimental and theoretical results show that the main vibrational 

features resolved in the PFI-PE spectra can be assigned to excitation of vibrational modes 

involving the H-S torsional, C-S stretching and/or H-S bending vibrations of CHsSH^ and 

gawc/ie-CH3CH2SH^. A doublet observed for the H-S torsional mode is tentatively attributed to 

mixing of the harmonic vibrational levels due to the low potential barriers between the potential 

wells of the gauche- and rrons-conformers of CH3CH2SH and CH3CH2SH^. The vibrational 

structures observed in the PFI-PE spectra for CH3SH and CH3CH2SH are consistent with the 



www.manaraa.com

11 

fflq)ectation that ionization involves the ejection of a mostly nonbonding electron, associated 

with the S. 

1. Introdttctioii 

The recently developed pulsed field ionization photoelectron (PFI-PE) spectroscopic 

technique'"^ achieves resolution approaching that of optical spectroscopy. Bondybey, MuUer-

Dethlefs and co-workers have shown that PFI-PE spectra for molecular species can be obtained 

with good sensitivity using one-color nonresonant two-photon (N2P) ionization."*"'" In many 

cases, the one color N2P-PFI-PE spectra are surprisingly similar to those acquired by the single 

vacuum ultraviolet (VUV) photon ionization scheme. '̂̂  The N2P-PFI-PE scheme is very 

attractive because of its high sensitivity and the availability of commercial pulsed dye lasers 

with the output range of 200-400 nm required for the ionization of most polyatomic species at 

their thresholds. 

We have recently employed the N2P-PFI-PE technique to study sulfur-containing 

radicals and organosulfur molecules.''*'̂  Here we present the results obtained and the analysis 

of the N2P-PFI-PE spectra of CH3SH and CH3CH2SH near their ionization thresholds. These 

spectra provide accurate determinations of the ionization energies (lEs) for CH3SH and 

CH3CH2SH and the vibrational fi«quencies for CH3SH* and CH3CH2SIT*". Ab initio 

calcijlations on the energetics and structures of CH3CH2SH and CH3CH2SH^ at the Gaussian-2 

level'̂ '̂ '* are also presented to compare with the experimental results. 
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2. Experimental and theoretical methods 

2.1. Experiment 

The experimental ^jparatus used in this study has been described in detail.''''̂  It is 

modified from the laser ionization time-of-flight (TOF) mass spectrometer used in previous 

photodissociation studies.A two-stage microchannel plate detector and a set of simple 

aperture lenses for PE detection have been added below the photoionization region and opposite 

the ion TOF tube. 

For this experiment, CH3SH (99.5% pure) and CH3CH2SH (99% pure) obtained from 

Aldrich are used without further purification. The CH3SH or CH3CH2SH sample is seeded in 

Ar carrier gas (sample : carrier gas « 0.2 : 1.0) at a total stagnation pressure of« 2.5 - 3.5 bar at 

298 K- The gas mixture is introduced into the photoionization region by supersonic expansion 

through a pulsed valve with a nozzle diameter of 0.5 mm. The molecular beam is skimmed by 

a conical skinamer (1-mm diameter, 3.8 cm from the nozzle) before intersecting with a tunable 

laser beam (90°, 8.3 cm downstream from the skimmer). Both the pulsed valve and the dye 

laser operate at a repetition rate of 13 Hz. 

The molecular beam source chamber is pumped by a freon-trapped, 6-in. difiiision 

pump (pumping speed » 2000 1/s), while the photoionization chamber and the ion-TOF tube are 

evacuated by two 50 I/s turbomolecular pumps. During the experiment, the beam source 

chamber and the photoionization chamber are maintained at pressures of about 1x10^ and 2 x 

10"^ Torr, respectively. 

The second harmonic output of an excimer (Lambda Physik EMG 201 MSG) pumped-

dye laser (Lambda Physik FL 3002) is focused into the photoionization region by a 200-mm 
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focal length fused-silica lens. Coumarin 153 and 540A dyes aie used to produce the 

fundamental ou^ut in the 518-540 nm regioiL A typical laser pulse energy used in the second 

haimonic output range of258-268 nm is 12 nJ, as monitored with a pyroelectric detector. The 

wavelength calibration uses the known resonance-enhanced multi-photon ionization spectrum 

of atomic sulfinr,^ which is produced by the multi-photon laser photodissociation of CH3SH or 

CH3CH2SH. 

Ion detection using the ion TOF mass spectrometer has been described in detail 

previously.^^ '̂  Here, a constant electric field of280 V/cm is used to extract the ions formed in 

the photoionization region. 

The ZEKE/PFI detection scheme relies on delayed PFI of long-lived high-n Rydberg 

states populated by laser excitation at a few wavenumbers below the ionization threshold. In 

this experiment, the firing of the excitation laser is delayed by 750 |is with respect to the 

triggering pulse for opening the pulsed valve. A l-|is pulsed field of 2-4 V/cm is applied to the 

repeller plate 3 ^is after firing the dye laser. The pulsed field-ionizes the molecular species in 

high-n Rydberg states as well as extracts the electrons thus formed to the microchaimel plate 

electron detector. The firing sequence of the pulsed valve, dye laser and pulsed electric field is 

controlled by two digital delay units (Stanford Research DG535). The electron signal firom the 

electron detector and the laser energy signal fi-om the pyroelectric detector are fed into two 

identical boxcar integrators (Stanford Research SR250), which are interfaced to an IBM/AT 

computer. The electron and laser energy signals are averaged for 30 shots at each laser 

wavelength. 
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The bandwidth of the dye laser is 0J2 cm*' for the fundamental and about 0.4 cm' for 

the second harmonic outputs. For a two-photon ionization process, the resolution of the 

ionization laser is expected to be about 0.8 cm*'. 

22. Ab initio calculations 

The results of G2 calculations on the CH3SH and CHsSH^ systems have been reported 

previously.'̂  The predictions for the IE of CH3CH2SH and the heats of formation (AH°fo) for 

CH3CH2SH and CH3CH2Sir" calculated using the G2 procedure are compared to experimental 

results here. 

The G2 method has been described in detail by Curtiss et Briefly, at the G2 level 

of theory, molecular structures are optimized using the second-order Meller-Plesset 

perturbation theory (MP2) with all electrons iocluded using the 6-31G(d) basis set 

[MP2(full)/6-31G(d)]. All single-point calculations are based on the MP2/6-31G(d) optimized 

structures. The G2 method, an approximation of a QCISD(T)/6-311-Kj(3df,2p) calculation, 

requires single-point calculations at the QClSD(T)/6-311G(d,p), MP4/6-311G(d,p), 

MP4/6-311+G(d,p), MP4/6-311G(2df,p) and MP2/6-311+G(3df,2p) levels. A small semi-

empirical correction is ^plied to account for high-level correlation effects. 

The MP2/6-31G(d) harmonic vibrational frequencies, scaled by 0.93,'® are taken to be 

the vibrational frequencies and are used for the zero-point vibrational energy (ZPVE) 

correction. The total energy at 0 K (Eo) is equal to Ec + ZPVE, where Ee is the total electronic 

energy. All single point ab initio calculations have been carried out on CRAY-YMP and 

CRAY-2 using the GAUSSIAN 90 or 92 program package." 
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At the MP2/6-31G(d) level, two equilibrium structures each for CH3CH2SH and 

CH3CH2Slf' were obtained with ZC-C-S-H = 60° (̂ lOwcAe-conformation) and 180° (trans-

conformation). The MP2/6-31G(d) geometrical parameters are given in Table 1. The labeling 

of the S, C and H atoms are shown in Figs. 1(a) and 1(b). For both CH3CH2SH and 

CHsCHaSH^, the MP2/6-31 G(d) calculation predicts that the gauche-confoimer is slightly more 

stable than the /rons-conformer. The CH3CH2-SH and CH3CH2-Slf' bond rotational barriers 

are less than 2 kcal/mol at the MP2/6-31G(d) level. This indicates that the vibrational modes 

for CH3CH2SH and CH3CH2SKr involving C-S rotation (i.e., the torsional mode) are not 

harmonic, even at low vibrational levels and that the vibrational frequencies obtained from the 

harmonic approximation are not accurate, hi spite of the strong anharmonicities, the G2 vzdues 

for AH°fo's and lEs are only slightly affected since the contributions of these modes to the 

ZPVEs are minor. 

However, the anharmonici^ may cause serious error in the vibrational spacings 

calculated for the torsional modes of CH3CH2SH and ^30112811^. Correct values can only be 

obtained by considering the potential energy as a function of the normal coordinate and solving 

the corresponding Schrodinger equation. The calculations of the torsional potentials are made 

at the MP2/6-31G(d,p) level using DEC Alpha workstations, and the torsional vibrational 

wavefunctions and energies described below are made using the Mathcad Plus 6.0 software 

installed in a Pentiimi microcomputer. 
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Table 1 
Geometrical parameters for gauche-CHiCHiSH, /rfl/is-CH3CH2SH, gawc/je-CHjCHzSH^ and /rfl/w-CH3CH2SH^ calculated at the 
MP2/6-31G(d) level® 

gauche-confomer (CO 7>a«j-conformer (Cs) 
CH3CH2SH/CH3CH2SH^ Ar(or AZ)** CH3CH2SH/CH3CH2SH^ Ar(or AZ)** 

r[S(l)-C(2)] 1.819/1.799 -0.020 1.822/1.802 -0.020 
r[C(2)-C(3)l 1.521/1.533 +0.012 1.521/1.520 -0.001 
r[C(3)-H(4)] 1.092/1.091 -0.001 1.093/1.091 -0.002 
r[C(3)-H(5)] 1.093/1.092 -0.001 
r[C(3).H(6)] 1.094/1.092 -0.002 1.093/1.092 -0.001 
r[C(2)-H(7)] 1.093/1.098 +0.005 1.092/1.099 +0.007 
r[C(2).H(8)] 1.093/1.092 -0.001 
r[S(l)-H(9)] 1.342/1.350 +0.008 1.341/1.350 +0.009 
ZS(1)-C(2)-C(3) 113.8/111.9 -1.9 109.0/111.2 +2,2 
ZC(2)-C(3)-H(4) 110.8/112.0 +1.2 111.0/111.9 +0.9 
ZC(2)-C(3)-H(5) 111.0/111.9 +0.9 
ZC(2)-C(3)-H(6) 110.3/107.0 -3.3 110.1/107.8 -2.3 
ZC(3)-C(2).H(7) 111.0/111.3 +0.3 110.2/113.0 +2.8 
ZC(3)-C(2)-H(8) 110.4/112.7 +2.3 
ZC(2)-S(1)-H(9) 96.3/97.8 +1.5 97.0/99.0 +2.0 
ZS(1)-C(2)-C(3)-H(4) 57.1/59.6 +2.5 60.2/61.6 +1.4 
ZS(1)-C(2)-C(3)-H(5) -62.9/-64.0 -1.1 
ZS(1)-C(2)-C(3)-H(6) 177.5/177.8 +0.3 
ZH(6)-C(3)-C(2)-H(7) 60.0/59.1 -0.9 59.7/60.8 + 1.1 
ZH(6)-C(3)-C(2)-H(8) -58.5/-63.5 -5.0 
ZC(3)-C(2)-S(I)-H(9) 60.5/55.6 -4.9 
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Table 1 (continued) 

"All bond distances ( r )  are in A. All angles (Z) are in degrees. 
"Ar = KCHaCHzStT) - KCHaCHjSH) and AZ = ZCCHsCHzSH") - ZCCHjCHzSH), where KCHsCHzSH"), KCHjCHzSH)], 

Z(CH3CH2SH^ and Z(CH3CH2SH)] are the r and Z values associated with CH3CH2SH and CH3CH2SH^. 
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H .H4 

Ht 

.He 

CHjCHiSH/CHjCHiSH"^ 

(gauche; Ci) 

H -^4 

H7 

H9 

CH3CH2SH/CH3CH2SH'̂  

(trans; CJ 

Fig. 1. Structures for ^oe/cAe-CHsCHiSH/CHaCHzSlT and //-^Jwy-CHaCHaSHCHsCHzSPr 
showing the numbering of S, C and H atoms. See Table 1 for detailed MP2/6-31G(d) 
optimized geometric parameters. 
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Strictly speaking, the normal coordinate for the torsional mode involves not only the 

dihedral angle ZC-C-S-H but also the other internal coordinates. However, it is reasonable to 

assume that ZC-C-S-H is the major component To further simplify the problem, we assume a 

rigid rotation, i.e., the moments of inertia of the CH3CH2 and SH moieties do not change during 

the internal rotation. With these assimiptions, the energies for the C-S bond rotation are the 

eigenvalues of the following one-dimensional Schrodinger equation; 

(-h^/2n)[d^«yd4'] +V(«>P(«=E>P((|i), (1) 

w^ere *P(<j>) is the vibrational wavefimction for the torsional vibration; (|) is the normal 

coordinate for the torsional mode, i.e., ZC-C-S-H; V((|)) is the potential energy flmction; is the 

reduced moment of inertia of the CH3CH2 and SH moieties along the C-S bond; and the other 

symbols have their usual meanings. The values for ^ were taken as those for the equilibrium 

structures at « 60°, which are 1.68 and 1.70 amu for the neutral and cation, respectively. 

To construct V((|>), we calculate the MP2/6-31G(d,p) energies at (j) = 0°, 10°,..., 180°. 

At each value of <j>, all other bond-lengths, bond-angles and torsional angles are optimized to 

obtain the lowest possible energies. In addition, the equilibrium structures and transition 

structures with ((> « 60° and 120°, respectively, are fully optimized separately. Using these 

discrete points, smooth curves for the torsional potentials of CH3CH2SH and CHsCHaSff*" are 

produced by cubic-spline interpolation. The torsional potentials for CH3CH2SH and 

CH3CH2SH^ thus obtained are shown in the lower and upper parts of Fig. 2, respectively. The 

energy scale is given in kcal/mol measured with respect to the minimum of the potential well 

for CH3CH2SH (or CH3CH2SH^ at ZC-C-S-H « 60°. 
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Fig. 2. Torsional potentials for CH3CH2SH (lower) and CHsCHiSH^ (upper). The harmonic 
levels are shown by dashed lines and the levels obtained by solving Eq. (1) are shown as fiill 
lines. The energy scale is in kcal/mol and is measured with respect to the corresponding 
minimum of the potential well. Four allowed transitions from the oj and ej levels of 
CH3CH2SH are shown by vertical arrows. 
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The variational method is used to obtain the ground and melted vibrational state for the 

CH3CH2SH and CH3CH2Sir" systems. Since V((j>) is an even fimction (symmetric about <j> = 

180**), each eigenfimction is either odd (o) or even (e). Furthermore, the potential has 

periodici^ of 2n, so the sine and cosine fimctioas are chosen for the basis sets. In this study, SO 

sine functions [sin(n<|i), n = 1,2, 3,...» 50] and 50 cosine functions [cos(n<|)), n = 0,1,2, 49] 

were used to obtain the odd and even eigenfimctions, respectively. Each matrix element 

consists of a kinetic energy integral and a potential energy integral. Since the basis functions 

are the eigenfimctions of the kinetic energy operator, the kinetic energy integrals are simply 

n^h^/2(i. The potential energy integrals are evaluated numerically using the Romberg algorithm 

implemented in the Mathcad Plus 6.0 software. Diagonalization are then performed to obtained 

the eigenvalues and hence the expansion coefficients. 

The first few vibrational energy levels (full lines) are shown in Fig. 2 together with 

those obtained from the simple harmonic ^proximation (dashed lines) at the potential wells. 

The (even, odd) torsional levels for the neutral and cation are denoted as (en, On) and (Cn^, On^, n 

= 1,2,3,..., respectively. 

3. Results and discussion 

3.1. CHsStr 

The equilibrium geometry of methyl mercaptan has Cs symmetry.'® The values for the 

IE of CH3SH obtained in previous photoionization and PE spectroscopic studies vary in the 

range from 9.438 to 9.46 eV.'̂ ^ The Hel PE spectra^^ and the photoelectron-photoion 
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coincidence (PEPICO) spectrum^ for CH3SH reveal a progression of vibrational peaks in the 

first electronic band. This progression has an average vibrational spacing of 647 ± 25 cm'' and 

is attributed to excitation of the CHs-SH  ̂stretching mode.̂  Since the ionization of CH3SH 

to form CHsSH*" in its ground state corresponds to the removal of a nonbonding electron from 

the S atom, the equilibrium geometries for CH3SH and CHsSH^ are similar. For this reason, the 

vibrational progression of the first PE band is expected to be dominated by the 0-0 transition, 

which is consistent with experimental observations.^"'̂ ^ 

Figures 3(a) and 3(b) show the N2P-PFI CHjSlT" ion and N2P-PFI-PE spectra for 

CH3SH in the photon energy region of 75 600 - 77 400 cm"' (2 x 37 800 -2 x 38 700 cm"'), 

respectively. These are the average of two reproducible scans. The peak positions of PE 

structures resolved in Fig 3(b) is reproducible within 1 cm*'. The PFI-PE spectrum of Fig. 3(b), 

measured using a pulsed field of 2.4 V/cm, has not been corrected for the Stark shift of 4.2 cm"'. 

The ion and PE spectra have not been nomialized by the dye laser intensities. Since the 

experiment involves two-photon ionization, the ion and electron signals at corresponding 

photon energies should be normalized by the square of the dye laser intensities to 3deld the 

correct photoionization efBciency (PIE) and PE spectra. We find that the PIE and PE thus 

obtained are essentially the same as those shown in Fig. 3(a) and 3(b), except that the signal-to-

noise ratios are poorer due to the fluctuation of the measured dye laser intensities. The fact that 

the ion and PE spectra observed here using the N2P ionization scheme are in good accord with 

the respective single VUV PIE spectrum and the PEPICO spectrum for CHsSH^" supports the 

conclusion that the spectra shown in Figs. 3(a) and 3(b) are not significantly affected by 
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Fig. 3. (a) N2P CHsSif' ion spectrum in the region 75 600-77 400 cm"' (2 x 37 800-2 x 38 700 
cm"') obtained using an electric field of 280 V/cm. (b) N2P-PFI-PE spectrum for CH3SH in the 
region 75 600-77 400 cm"' (2 x 37,800-2 x 38 700 cm"') obtained using a pulsed electric field 
of 2.4 V/cm. The PFT-PE spectrum has not been corrected for the Stark shift effect 
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normalization of the (fye laser intensities. We note that the resolution of the PFI-PE spectrum 

of Fig. 3(b) is more than 40 times better than that of the PEPICO spectrum.^" 

After taking into account the Stark shift of 4.2 cm'', the IE for CH3SH, as marked by the 

strong PE peak of Fig. 3(b), is determined to be 76 302 ± 5 cm'' (9.4602 ± 0.0006 eV). The 

half width for the PE peak is » 12 cm''. The uncertainty of ±5 cm'' for the IE accounts for the 

Stark shift and the reproducibility of the PE peak position. The latter is mosdy determined by 

the laser photon energy resolution of 0.8 cm'' used in this study. While the IE determined here 

is in agreement with the value (9.46 eV) determined in previous PEPICO"° and PE 

spectroscopic studies,^*^^ it is higher than the value (9.44 eV) derived in previous PIE 

measurements.^"'̂  

Since a repeller field of 280 V/cm is used, the onset of the CH3SH* ion spectrum is 

expected to be affected considerably by the Stark shift effect. As shown in Fig. 3(a), the 

ionization onset of the N2P ion spectrum of CH3SH is more than 80 cm'' lower than the IE of 

CH3SH determined by the first strong PE peak of the N2P-PFI-PE spectrum. 

The G2 predictions for the IE of CH3SH, and the AH^fo's and Eo's for CH3SH and 

CH3SH^ have been reported previously." These predictions are compared to the present and 

previous^"'̂ ^ experimental findings in Table 2. As shown in the table, the 1E(G2) value of 

9.46 eV is in excellent agreement with the EE of CH3SH (9.4602 ± 0.0006 eV) determined in 

the present study. Using this IE value and the known AH°ro(CH3SH) = -2.9 kcal/mol,^ we 

obtain AH°jD (CHsSH^ = 215.3 kcal/mol, which is also in excellent accord with the AH°fD(G2) 

value of 215.2 kcal/mol for CHsSH^. 
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Table 2 
Total G2 energy [Eo(G2)], G2 and experimental heats of formation and AfH°o (expt)] and G2 and experimental ionization 
energies [IE(G2) and lE(expt)]'' 

Eo(G2) AfH°o(G2) AfH^o (expt) IE(G2) lE(expt)'' 
(hartree) (kcal/mol) (kcal/mol) (eV) (eV) 

Neutrals 
CH3SH A3SAmT -2.9" -2.9'' 9.46" 9.4553 ± 0.0006 

9.468 ±0.025' 
9.446 ±0.010' 
9.44 ±0.01^ 
9.438 ±0.0018 

gauche-CHiCWiSHiCi) -477.37504 -7.1 - 9.30 9.2918 ± 0.0006 
9.285±0.005'' 

7)-arts-CH3CH2SH(Cs) -477.37419 -6.6 - 9.28 _ h 

Cations 

CHjSH  ̂ -437.80090' 215.2" 215.2* - -

Gauche-CU3SH2SH\Ci) -477.03325 207.3 - - -

7>-a«j-CH3SH2SH'(Cs) -477.03309 207.4 - - -

"Unless specified, the values given in the table are detemiined in this work. 
''The recommended values are in bold font. 
•^Reference 18. 
"^Reference 25. 
'Reference 20. 
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Table 2 (continued) 

'Reference 21. 
^Reference 22. 
''The IE of CH3CH2SH determined here is assigned to that for the gauche-conformer. See the text. 
Value calculated using AfH^CHaSH) = -2.9 kcal/mol and lECCHaSH) = 9.4553 ± 0.0006 eV. 
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The ab initio stnictmes and vibrational fieqiiencies for CHsSlT' obtained at the 

MP2/6-31G(d) level have been reported by Chiu et cd}^ As pointed out above, the ionization of 

CH3SH in the first electronic band involves the removal an electron fix}m the S atom. Although 

the electron ejected is mostly nonbonding in nature, it is still expected to affect the bonding 

parameters associated with the S atom, i.e., r(C-S), r(S-H) and Z(C-S-H). The observation of 

the vibrational progression associated with the CHs-SH^ stretching mode in the PE spectrum of 

CH3SH is consistent with this expectation. We show in Table 3 the MP2/6-31G(d) harmonic 

vibrational firequencies'® for the torsional (a"), C-S stretching {a') and S-H bending (a) modes 

for comparison with the vibrational spacings observed in Fig. 3(b). These theoretical 

frequencies have been scaled by 0.93.'* We have denoted the torsional, C-S stretching and S-H 

bending frequencies for CHsSH*" as vj"^, V2* and V3^, respectively, in the order of increasing 

frequency. 

The PE peak at 76,989 cm"' [(2 x 38 492.3 + 4.2) cm"'] resolved in Fig. 3(b), which is 

separated from the first PE peak by 687 ± 3 cm"', is assigned to excitation of the v-i = 1 state of 

CHsSH*". This vibrational spacing is greater than the average spacing of 647 ± 25 cm"' obtained 

in the previous PEPICO experiment^" The C-S stretching frequency of 687 ± 3 cm"' for 

CHjSlf" observed here is in accord with the scaled MP2/6-31G(d) prediction of 678 cm"'. A 

carefril examination of the spectrum of Fig. 3(b) reveals two small peaks appearing at 76 480 

cm"' [(2 X 38 237.8 + 4.2) cm"'] and 77084 cm"' [(2 x 38 540 + 4.2) cm"']. These peaks are 

found in two independent scans and have signal-to-noise (S/N) ratios above the noise level. 

Since their spacings of 178 ± 3 and 782 ± 3 cm"', measured with respect to the IE of CH3SH 
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Table 3 
Comparison of theoretical and experimental vibrational frequencies for CHsSH^ and CH3CH2SH^® 

'  • •  I I — l - l  I I  I  • •  I  l l . . . .  I  I  

Assignment Theoretical (cm") Experimental' (cm ) 
CHaSK" 

Vi^ [torsional (a")] 
V2^ [C-S stretch (a')] 
V3^ [S-H bend (a')] 

212 
678 
770 

178'' (w) 
687 (s) 
782'' (w) 

gflMc/ie-CHsCHzSH^ 
v/ [Torsional] 
ei -> e2^ 
0| —> 02^ 

+ V3 
V4^ [C-S stretch] 

+ V5 
+ 

V9 

174(170) 
93' 
169' 
289(289) 
615(607) 
707 (676) 
1089(1080) 

116''(s) 
144''(s) 
288 (s) 
628 (s) 
696 (w) 
1058 (w) 

N) 00 

®A11 MP2/6-31G(d) frequencies have been scaled by 0.93. The MP2/6-31G(d) frequencies for CHsSH^ are obtained from Ref. [18]. 
""Values in parentheses are scaled harmonic frequencies for rram-CH3CH2SH. 
'T'he uncertainties for the vibrational spacings are ±3 cm"', w = weak and s = strong. 
''Tentative assignments. See the text. 
'Unsealed frequencies correspond to the ionization transitions ei -> ei^ and oi -> o/. See the text. 
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(i.e., the peak position of the first strong PE peak), are in fair agreement with the scaled 

MP2/6-31G(d) torsional and S-H bending fi:equencies of 212 and 770 cm"', we tentatively 

assign these peaks to vi^ = 1 and = 1, respectively. A future experimental study with higher 

S/N ratios and higher energy resolution, together with a higher level theoretical smdy. is needed 

to confirm these assignments of vi"^ and v^*'. 

3.2. CH3CH2Sfr 

The success in identifying excitations of the torsional, C-S stretching and S-H bending 

vibrational modes of CHsSKT is based on the expected structural change of CH3SH upon 

removal of a mostly nonbonding electron from the S atom. As presented in the discussion 

below, this idea is extended to help assign the vibrational structures observed in the N2P-PFI-

PE spectrum of CH3CH2SH. 

In order to gain insight into the possible vibrational modes of CHsCHiSH^ which may 

be excited in the ionization of CH3CH2SH, we show in Table 1 the computed differences in 

bond lengths (Ar) and in bond angles (AZ) between gauche-CK^CHjSH and gauche-

CH3CH2SH^ and between ft-flny-CH3CH2SH and /rans-CH3CH2SH^. The most significant 

change in bond length upon ionization is that of the C-S bond, which is predicted to decrease by 

0.02 A. Thus, the C-S stretching vibration of CH3CH2SH* is expected to be excited. For the 

gOMcAe-conformer, the change in the dihedral angle ZC(3)-C(2)-S(1)-H(9), -4.9°, is also 

significant, suggesting excitation of the torsional mode. The changes of 1.9°-2.2° in 

ZS(1)-C(2)-C(3) and 1.5°-2.0° in ZC(2)-S(1)-H(9) indicate possible excitation of S-H and C-S 
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bending vibrations. Other changes in bond angles involving C and H atoms are necessary to 

balance the torsional and S-H and C-S bending vibrations involving the S atom. 

Fig. 4 shows the N2P-PFI-PE spectrum for CH3CH2SH in the photon energy range of 

74 600-76 400 cm"' (2 x 37 300-2 x 38 200 cm*'). Again, this spectrum has not been corrected 

for the Stark shift The pulsed field used in measuring this spectrum is 3 V/cm, which 

coiresponds to a Stark shift of« 5 cm"'. The PFI-PE signals have also not been normalized by 

the square of the dye laser intensities due to the poor signal-to-noise ratios of the measured laser 

intensities at photon energies >75 800 cm"' (>2 x 37 900 cm"'). Within experimental 

uncertainties, we find that the relative intensities for vibrational peaks observed in the 

normalized spectrum in the region of 74 600-75 800 cm"' (>2 x 37 300-2 x 37 900 cm"') are 

similar to those shown in Fig. 4. 

Similar to the N2P-PFI-PE spectrum for CH3SH, the spectrum of Fig. 4 is dominated by 

the first vibrational PE peak at 37 469 cm"'. After taking into accoimt the Stark shift, the 

position of this peak corresponds to the two-photon energy of 74 943 ± 5 cm ' (9.2918 ± 0.0006 

eV) and marks the IE of CH3CH2SH. The observation of the dominant vibrational PE band at 

the EE is consistent with the expectation that the ionization of CH3CH2SH, as in the case of 

CH3SH, involves the ejection of a mostly nonbonding electron associated with the S atom. 

Using the G2 procedure, we have calculated the theoretical Eo, EE and AH°ro values for 

goMc/ze-CHsCHzSH and /rans-CH3CH2SH, and the theoretical Eo and AH°(o values for gaxiche-

CH3CH2SH^ and /rany-CH3CH2SH .̂ These values are listed in Table 2. Experimental AH°{d's 

for these species are not available. The G2 calculation shows that gauche-Cl^^ClhSii is 
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t—I 
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-1 
cm 

Fig. 4. N2P-Pn-PE spectrum for CH3CH2SH in the region 74 400-76 320 cm"' (2 x 37 200-2 x 
38 160 cm'') obtain^ using a pulsed electric field of 3 V/cm. The PFI-PE spectrum has not 
been corrected for the Stark shift effect. 
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more stable than /m«y-CH3CH2SH by 0.5 kcal/mol, while gauche-CYliCYizSlC is more stable 

than flrms-CH3CH2SIf by only 0.1 kcal/mol. The G2 lEs for gicn/cAe-CHaCHaSH and trans-

CH3CH2SH are 9.30 and 9.28 eV, respectively, >^ch are in excellent agreement Avith the 

experimental value of 9.2918 eV. In a gas cell photoionization experiment, it would be difi5cult 

to distinguish the lEs of the gauche- and /rons-conformers. In the beam expansion conditions 

used in this experiment, the vibrational temperature attained for CH3CH2SH should be in the 

range of 50-100K. The low vibrational temperature achieved in this study is shown by the 

negligible intensities for the hot bands observed below the IE of CH3CH2SH. Assuming that 

the prediction of the relative stabilities for gauche-ChjCHiSii and /rans-CH3CH2SH is correct, 

we estimate that <8% of the CH3CH2SH in the pulse supersonic jet has the /rflns-CH3CH2SH 

structure. On the basis of this estimate, we have assigned the experimental IE of 74 943 ± 5 

cm"' (9.2918 ± 0.0006 eV) determined here to be the EE of gat«c/ie-CH3CH2SH. 

The positions of other weaker vibrational peaks, measured with respect to that of the 

first strong vibrational PE peak (i.e., the IE), are 116, 144, 288, 628, 696 and 1058 cm"'. In 

view of the population analysis, which indicates that the population of /rany-CH3CH2SH is 

insignificant in the pulsed supersonic beam, we attribute these vibrational peaks to excitation of 

the vibrational modes of gauche-CH^CHz'SH^. These spacings are compared to the scaled 

MP2/6-31G(d) harmonic frequencies for gauc/re-CH3CH2SH^ in Table 3. The harmonic 

firequencies labeled vj"^, vi*', v/, vs^ and vg"*" in the table correspond to the lowest and the 3rd, 

4th, 5th and 9th lowest frequencies of the 21 vibrational modes of gauche-CYliCB^Sli^. The 

scaled MP2/6-31G(d) harmonic fi^quencies for /ro/w-CHsCHaSlT" are similar to the 

corresponding harmonic frequencies of gauche-C}h,Cli2S}iC (see values in parentheses in 
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Table 3). The scaled theoretical hannonic fisquencies of V3* = 289 cm'̂  = 615 cm"', = 

707 cm"' and V9'*" = 1089 cm*' for giawc/re-CHaCHzSH*^ match reasonably well with the 

0q}erimental spacings of 288, 628, 696 and 1058 cm"', respectively. The lowest theoretical 

harmonic frequency for vi^ = 174 cm"' corresponds to excitation of the torsional vibrational 

mode of goMcfe-CHsCHaSKr. Near the expected vi^ frequency, it is interesting that a doublet 

with spacings of 116 and 144 cm"' measured with respect to the IE are observed in the PFI-PE 

spectrum of CH3CH2SH. 

The harmonic vibrational motions for V3^, v/, and V9^ of gauche-CYijiCYijSYC 

are depicted in Fig. 5, (a)-(e), respectively. As indicated above, vi"^ is the torsional mode which 

mainly involves the rotation of H around the C-S bond. The V3^ mode involves S-H bending 

and the motion of the BTs in the CH3 group balances the S-H bending motion. The v/ mode 

corresponds to C-S stretching. Modes vs^ and V9^ also involve H-S bending. Both vi"*" and vs"^ 

change the dihedral angle ZC(3)-C(2)-S(1)-H(9). The change in r(C-S) is mainly induced by 

V3^. Modes V3^, vs^ and change ZC(3)-C(2)-S(1). These changes in bond lengths and bond 

angles induced by these vibrational modes are consistent with the more significant changes ui 

bond lengths and bond angles associated with the S atom that occur when gauche-CHiClliSli 

is ionized to form gauche^HiCiiiSlC in the ground state (see Ar and AZ values in Table 1). 

As pointed out above, the difference between the stabilities for gauche-Cl{3,CliiS}\ and 

/raAw-CH3CH2SH (ga«c//e-CH3CH2SHr" and /ranLy-CH3CH2SH^ is predicted to be < 0.5 

kcal/mol (<0.1 kcal/mol), so we expect high anharmonicity for the torsional potential V(<|>), 
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(d) (e) 

Fig. 5. Schematics showing the harmonic vibrations of ^arwcAe-CHaCHiSH: (a) vi^ (torsional); 
(b) vs"^; (c) v/ (C-S stretch); (d) vs"^; and V9'̂ . 
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where tj) is the dihedral angle ZC(3)-C(2)-S(1)-H(9). As shovm in Fig. 2, the potential barrier 

located at » 120®, is «1.7 kcal/mol (wl.4 kcal/mol) for the CH3CH2SH (CH3CH2SH^ system. 

Under the simple harmonic q)proximation, only the two or three lowest (torsional) vibrational 

states (shown by dashed lines) are classically bound by each potential well. The fact that the 

potential barrier heights are comparable to the vibrational quanta causes the harmonic levels in 

one potential well to mix with those in the others. Since V(<(>) is symmetric about ({> = 180°, the 

actual (torsional) vibrational levels obtained by solving Eq. (1) are classified as odd or even 

levels (indicated by full lines in Fig. 2). At energies above the potential barrier, the system 

resembles a firee rotating system whose energy levels (except the lowest one) are doubly 

degenerate. 

The calculated energies for the five lowest (torsional) vibrational levels for CH3CH2SH 

(oi, ei, ez, 02 and ej) and CH3CH2SH* (oj, ei, 62, 02 and e3) are listed in Table 4. The energies 

of these levels are measured with respect to the corresponding potential wells at (|) « 60°. The 

three lowest states for CH3CH2SH are oi, ei and e2 with the energies of 109, 128 and 241 cm"', 

respectively. Assuming a vibrational temperature in the range of 50-100 K for the molecular 

beam, the respective populations for the ei and e2 states are estimated to be 56-76% and 2.2-

15% that of the groimd oi state, respectively. On the basis of this analysis, we conclude that 

ionization firom the oi and ej states is important, but ionization from the e2 level can be 

neglected. 

The probabilities of transitions between the vibrational states of the neutral and the 

cation are determined by the Franck-Condon factor (FCF), | < ^ | ̂  ) | ̂, where T and ^ are 
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Table 4 
Theoretical energies for the (torsional) vibrational levels, transition energies and Franck-Condon factors for the 
CH3CH2SH/CH3CH2SH^ system. 

Torsional levels v(theo)°(cm'') Av(theo)''(cm'') Av(expt)° (cm'*) FCF(theo)''(cm"') Estimated Intensity" 
CH3CH2SH 

0i 109 oi -•o/:0 0 0.962 1.00 
ei 128 oi 02*: 169 144^ 0.036 0.04 
62 241 Ci —> C] ; -17 - 0.968 0.56-0.76 
02 314 ei -> 62^: 93 116^ 0.021 0.01-0.02 
63 381 ci —> e3^: 186 - 0.002 0.001-0.002 

CHaSHzSH^ 
0|̂  89 
e/ 91 
62^ 201 
02^ 258 
e/ m 

"Theoretical positions of (torsional) vibrational levels measured with respect to the respective potential wells. 
'̂ eoretical transition energies measured with respect to the position of the transition line 0| —> o/, i.e., the transition energy for 0| 

->• oj^ is taken as zero. 
"Experimental transition energies measured with respect to the IE of gaMc/ie-CH3CH2SH. 
"^Franck-Condon factor = KT|4^)| ^ for the corresponding Av process, where T and 4^ are the (torsional) vibrational wavefunctions 

for the neutral and cation, respectively. 
"The estimated intensities are calculated by taking the product of the relative population of oi or ei and the FCFs of the 

corresponding processes. The intensity for Oj -> O)^ is normalized as to unity, 
llie assignment of the 116 and 144 cm"' to ei -> ea^ and O] -> 02^, respectively, are tentative. See the text. 
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the (torsional) vibrational wavefimctions of the neutral and cation, respectively. An immediate 

conclusion is that transition is allowed only between even states and between odd states. The 

numerical values of FCFs for the five lowest allowed transitions are shown in Table 4. As 

expected, the oi -> oi"^ and ei -> ei"^ transitions are dominant, with FCFs close to unity. The 

FCFs for oi -> 02^ and ei e2^ are significantly lower with only « 4% and w 2% those of the 

respective oi -> oi^ and ei -> ei"^ transitions. For the ei -• transition the FCF falls to 0.002. 

The FCFs for ionization transitions fix)m 0i and ei to higher excited states of the cation are 

expected to be even lower. We estimate the relative intensity for an ionization transition by 

taking the product of the estimated population for oj or ei and the FCF of the process involved. 

The estimated relative intensities (oi -> oi"^ normalized to unity) are given in Table 4. 

Based on comparisons between the experimental [Av(expt)] and theoretical transition 

energies [Av(theo)], we assign the observed doublet at Av(expt) = 116 and 144 cm"' as due to 

the ionization transitions of ei ei* and oi -> 02*, respectively. Taking into account the 

accuracy of the theoretical predictions, the Av(theo) values of 93 and 169 cm"' for the ei -> 62^ 

and oi -• 02* transitions are in reasonable agreement with the corresponding Av(expt) values. 

However, the relative intensities for ei -> e2^ : oi -> 02^, estimated to be « 0.1-0.2 : 0.4 (Table 

4), are not in accord with the experimental observation that shows the transition for Av(expt) = 

93 cm"' is greater than that for Av(expt) = 116 cm"'. Because of the low intensities, the ei -> 

e3^ transition and transitions to higher excited cationic states may not be observable. The 

transition energy for ei -> ej"^ is predicted to be -17 cm*', i.e., 17 cm*' below the IE of 

CH3CH2SH. Since the strong PE peak at 76 302 cm*' is contributed by many vibrational modes 
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and the width of this peak is broad, especially at the base, it is likely that the ei —> ei^ transition 

is unresolved and contributes to the low energy shoulder of the strong PE peak. 

One of the difficult problems in the analysis of the vibrational structures of a polyatomic 

molecule, such as CH3CH2SH, is the hot band effects. The populations of low frequency 

vibrational modes of CH3CH2SH may give rise to vibrational hot bands below and above the 

IE. Judging from the observation that the intensities for vibrational hot bands below the BE of 

CH3CH2SH are significantly lower than the vibrational peaks of interest in this analysis, we 

have neglected the contribution of vibrational bands due to hot band excitations in our analysis. 

The scaled MP2/6-31G(d) harmonic freqviency for the CH3 torsional mode of 

CH3CH2Sir" is V2^ « 230 cm"', greater than scaled MP2/6-31G(d) harmonic frequency for S-H 

torsional mode vi"^ («170 cm"') by is60 cm*'. The respective methyl rotor potential energy 

barriers for CH3CH2SH and CH3CH2SH^ are calculated to be 1.5 and 1.1 kcal/mol at the 

MP2/6-31G(d) level. These values are similar to the H-S torsional potential barriers for 

CH3CH2SH and CH3CH2SH*'. The current theoretical analysis of the doublet for the H-S 

torsional modes of the CH3CH2SH/CH3CH2Sfr' system has neglected the interaction between 

the CH3 and H-S torsional motions. The failure of the analysis to reproduce the experimental 

doublet intensities for the H-S torsional mode suggests that a higher level of theoretical analysis 

of the observed H-S torsional vibrational excitations is required. A higher level theoretical 

analysis of the vibrational PE band structures should include the coupling of the methyl torsion 

and gauche-trans isomerization.^^ The degree of this coupling can be examined by comparing 

the high resolution PFI-PE spectra for CH3CH2SH, CD3CH2SH and CH3CH2SD in a fiiture 

experiment As shown in Tables 3 and 4, the predicted positions of the ej -> e2^ (93 cm*') and 
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oi Qri (169 cm"') transitions di£fer fiom the respective experimental positions of 116 and 144 

cm'' by more than 20 cm''. Perfa^, a higher level theoretical simulation will also yield better 

agreement between the predicted and experimental PE band positions. For these reasons, we 

consider that the present assignment of the doublet to ei and oi -> 02^ as tentative. 

4. Conclusion 

We have obtained the PE spectra for CH3SH and CH3CH2SH near their ionization 

thresholds using the N2P-PFI-PE spectroscopic techniques. These spectra yield highly accurate 

lEs for CH3SH and CH3CH2SH. The G2 predictions of the lEs for these molecules are in 

excellent agreement with the experimental results. On the basis of the G2 theoretical analysis, 

we conclude that the IE of 74,943±5 cm*' determined here for CH3CH2SH is due to the 

ionization reaction gawc/ie-CH3CH2SH + hv gaMc/2e-CH3CH2Sir + e". 

By comparing the experimental PE vibrational spacings with the scaled MP2/6-31G(d) 

harmonic ftequencies, we have assigned the vibrational features resolved in the PE spectra of 

CH3SH and CH3CH2SH. All the vibrational PE bands observed in the PE spectra can be 

attributed to excitation of the torsional, C-S stretching and/or S-H bending vibrations of 

CH3Str and gauche-CR^CYljSlt This observation is consistent with the conclusion that the 

ionization of CH3SH and CH3CH2SH involves the removal of an electron, mostly nonbonding 

in nature, from the S atom. 

The torsional potentials for CH3CH2SH and CH3CH2SH^ have been computed at the 

MP2/6-3 lG(d,p) level. A doublet observed for the torsional mode of CH3CH2SH^ is attributed 

tentatively to transitions between torsional levels of CH3CH2SH and CH3CH2SH^ arising fix)m 
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the mixing of the hannonic fiequencies due to the low torsional potential bairiers between the 

gauche- and /ronr-confonners. 
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CHAPTER 3. NON-RESONANT TWO PHOTON PULSED FIELD 
IONIZATION PHOTOELECTRON STUDY OF CH3CH2S FORMED IN 

THE PHOTODISSOCIATION OF CH3CH2SH 

A pqier published in the Journal of Electron Spectrometry and Related Phenomena 

Y.-S. Cheung, C.-W. Hsu and C. Y. Ng 

Abstract 

The non-resonant two photon pulsed field ionization photoelectron (N2P-PFI-PE) 

spectrum for CH3CH2S produced in the photodissociation of CH3CH2SH has been measured 

in the energy region of 2 x (36 160-37 200) cm*'. The assignment of the N2P-PFI-PE 

spectrum indicates that both the X^A" and A^A' states for CH3CH2S are formed in the 

photodissociation of CH3CH2SH at hv » 4.6 eV. The ionization energies for transitions to 

CH3CH2S'̂ (A'̂ A") from the X^A" and A ^A' states of CH3CH2S are determined to be 9.107 

± 0.004 and 9.077 ± 0.004 eV, respectively. The small ener©^ gap of 0.030 ± 0.004 eV 

observed between the X ^A" and A ̂ A' states of CH3CH2S is consistent with the ab initio 

theoretical calculation. 

1. Introduction 

The pulsed field ionization (PFI) photoelectron (PFI-PE) method has been established 

to be an unportant technique for photoelectron spectroscopic studies [1, 2]. Photoelectron 

spectra with energy resolutions better than 1 cm*' have been demonstrated using this method. 

Combining with the supersonic molecular beam technique, this method allows routine 

spectroscopic studies of polyatomic cations at the vibrationally resolved level [1]. For 
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diatomic and selected triatomic molecules, rotationally resolved spectroscopic studies of their 

cations can also be performed [1]. Despite the growing list of published PFI-PE spectra for 

molecules, only a few high resolution PFI-PE spectra for radical species have been reported 

[1, 3, 4]. In principle, radicals can be prepared by laser dissociation prior to PFI-PE 

measurements. This type of experiments would normally require at least two separate lasers 

[5]. Since many molecules are known to dissociate efficiently in the ultraviolet (UV) region 

[6], the steps involving radical preparation by photodissociation (using appropriate precursor 

molecules) and ionization via an N2P-PFI scheme can be achieved in a single UV laser shot. 

Such experiments, which involve the absorption of totally three UV photons, have been 

demonstrated in previous N2P-PFI-PE studies of SH from H2S and CH3S from CH3SH (and 

CH3SSCH3) [3,4]. In this report, we present a similar study of CH3CH2S prepared from the 

UV photodissociation of CH3CH2SH. 

On the basis of the vacuum ultraviolet (VUV) photoionization mass spectrometric 

sampling of photoproducts formed in the 193-nm (ArF) photodissociation of 

CH3CH2SCH2CH3, along with ab initio calculations of C2H5S, Ma et al. [5] concluded that 

C2H5S radicals with the CH3CH2S structure are predominantly produced in such a 

photochemical process. The VUV photoionization efficiency (PIE) spectrum for CH3CH2S 

was recorded and a value of 8.97 ± 0.01 eV was determined for the ionization energy (IE) of 

CH3CH2S [5]. This value is found to be in good agreement with the theoretical GAUSSIAN-2 

prediction of 9.07 eV [5]. In a recent laser induced fluorescence (LBF) study [7], CH3CH2S is 

shown to be produced predominantly in the 248-nm (KrF) laser photodissociation of 
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CH3CH2SH. This observation is consistent with the results of the 248-mn photodissociation 

of CH3SH, where the CH3S isomer is shown to be the dominant product [4, 6]. 

2. Experiment 

The experimental apparatus used in this study has been described in detail [3,4, 8]. It 

is modified fixim the laser ionization time-of-flight (TOF) mass spectrometer used in previous 

photodissociation studies [6, 9]. A two-stage microchannel plate detector and a set of simple 

aperture lenses for photoelectron detection have been added below the photoionization region 

and opposite to the ion TOF tube. 

For this experiment, CH3CH2SH (99% pure) obtained from Aldrich is used without 

further purification. The CH3CH2SH sample is seeded in Ar carrier gas (sample : carrier gas 

» 0.2 : I.O) at a total sts^nation pressure of »3.0 bar at 298 K. The gas mixture is introduced 

into the photoionization region by supersonic expansion through a pulsed valve with a nozzle 

diameter of 0.5 mm. The molecular beam is skimmed by a conical skimmer (1-mm diameter, 

3.8 cm from the nozzle) before intersecting with a tunable laser beam (90°, 8.3 cm 

downstream from the skimmer). Both the pulsed valve and the dye laser operate at a 

repetition rate of 13 Hz. 

The molecular beam source chamber is pumped by a freon-trapped, 6 in. diffusion 

pump (pumping speed « 2000 I s"'), while the photoionization chamber and the ion TOF tube 

are evacuated by two 50 1 s"' turbomolecular pumps. During the experiment, the beam source 

chamber and the photoionization chamber are maintained at pressures of about 1x10"^ and 

2x10"^ torr, respectively. 
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The second hannonic output of an excimer (Lambda Physik EMG 201 MSG) pumped-

(fye laser (Lambda Physik FL 3002) is fociised into the photoionization region by a 20-mm 

focal length flised-silica lens. Coumaiin 153 cfye is used to prodtice the fundamental output in 

the 524-542 mn region. Typical laser pulse energies used in the second harmonic output range 

of 262-271 mn are 1.2 mJ, as monitored with a pyroelectric detector. The wavelength 

calibration uses the known resonance-enhanced multi-photon ionization spectrum of atomic 

suliiir [10], which is also produced by the multi-photon laser photodissociation of CH3CH2SH. 

Ion detection using the TOP mass spectrometer has been described in detail previously 

[9]. Here, a constant electric field of 280 V cm"' is used to extract the ions formed in the 

photoionization region. The PFI-PE detection scheme relies on delayed PFI of long-lived high-

n Rydberg states populated by laser excitation at a few wavenumbers below the ionization 

threshold [1, 2]. In this experiment, the firing of the photodissociation and excitation laser is 

delayed by 750 |is with respect to the triggering pulse for openii^ the pulsed valve. A l-^s 

pulsed field of 3.1 V cm"' is qjplied to the repeller plate 3 us after firing the dye laser. The 

pulsed field field-ionizes the molecular species in high-n Rydberg states as well as extracts the 

electrons thus formed to the microchannel plate electron detector. The firing sequence of the 

pulsed valve, dye laser and pulsed electric field is controlled by two digital delay imits (Stanford 

Research DG535). The electron signal from the electron detector and the laser energy signal 

from the pyroelectric detector are fed into two identical boxcar integrators (Stanford Research 

SR250), v^ch are interfaced to an IBM/AT computer. The electron and laser energy signals 

are averaged for 30 shots at each laser wavelength. 
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The bandwidth of the dye laser is OJ. cm*' (full-width-at-half-maximum, FWHM) for 

the fundamental and «0.4 cm*' (FWHM) for the second harmonic outputs. For a two-photon 

ionization process, the resolution due to the ionization laser is expected to be « 0.8 cm*' 

(FWHM). 

3. Results and discnssion 

To a first approximation, the groimd state of CH3S belongs to the Csv point group 

[4,9] and has symmetry. As a result of the spin-orbit interaction, the ground and 1st 

excited states for CH3S can be labeled as the X^E^/z and A states, respectively. In the 

previous N2P-PFI-PE experiment, the lEs for the formation of CH3S'̂ ( X ^A") from the 

X ^E-ia and A ̂ E\a states of CH3S have been determined, yielding an accurate value for the 

spin-orbit splitting [4, 6]. Considering that CH3CH2S of Cs symmetry is formed by the 

substitution of a H atom in CH3S with a CH3 group, the degenerate ground state of CH3S 

decomposes into the X^A" and A ^A' states for CH3CH2S. The high-resolution T.TF study of 

CH3CH2O indicates that the electronic groimd state for CH3CH2O is ^A" [11]. In the recent T .TF 

study of CH3CH2S [7], together with MP2 ab initio calculation, the ground state of CH3CH2S is 

also assigned to be ^A". 

We have performed ab initio calculations to investigate the energies and geometries 

of the lowest two electronic states CH3CH2S(X^A", A^A') using the GAUSSIAN-94 suite of 

programs [12] installed at a Pentium personal computer. The geometry optimizations and 

frequency analysis were performed at the ROHF/6-31+G(d) level and energies were obtained 
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at the ROMP2(fuU)/6-311+G(d, p) level. At the ROHF/6-31-Kj(d) level, the trans­

configuration (see Fig. 1) is the most stable structure at both electronic states. At the 

ROMP2(full)/6-311+G(d,p)//ROHF/6-31-Kj(d) level, the electronic energy of the ^A" state is 

0.06 eV lower than the ^A' state. When zero-point vibrational energy (ZPVE) (scaled by 

0.8929) is included, however, the ^A' state becomes more stable (by 0.08 eV) due to the 

smaller ZPVE of the ^A' state. The ZPVE is known to be subject to a large uncertainty. In 

this case, the energy gap between the ^A" and ^A' states of CH3CH2S apparently lies in the 

range of uncertainties of the ZPVE cedculation. 

•% 'y 

The dominant electronic configuration for the A" and A' states of CH3CH2S are 

shown to be ...(12a')^(13a')\4a")' and ...(12a')^(13a')'(4a")^, respectively [7]. As shown in 

Fig. 1, the 13a' molecdar orbital corresponds to the p* orbital of S lying in the C-C-S plane, 

vsMe the 4a" orbital is the py atomic orbital of S oriented perpendicularly to the C-C-S plane. 

Since the px and py orbitals of the S atom are essentially nonbonding in nature, the energy 

separation between the ^A" and ^A' states is expected to be small, hi spite of the uncertainty of 

the ab initio calculation described above, we may conclude that this energy separation is likely 

to be wO.l eV. Following the conclusion of previous LIF experiments [7, 11], we assign ^A" as 

the ground state for CH3CH2S. 

The N2P-PFI-PE spectrum for CH3CH2S in the energy region of 2 x (36 160-37 200) 

cm"' [or 2 x (4.483-4.612) eV] is shown in Fig. 2. The spectra of Figs. 2(a) and 2(b) 

represent two independent scans. Assuming that the formation of CH3CH2S^ + e" from 

CH3CH2SH is a three-photon process, we have normalized the PFI-PE signal [1(6")] by 
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4a"07J 

13a'(p  ̂

12a'(5A) 

CH3CH2S (Q 

Fig. 1. Schematic diagram showing the geometry of rra/w-CHaCHaS. The 13a' and 4a" 
molecular orbitals for CH3CH2S are identified as the respective p* and py atomic orbitals of the 
S atom. 
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2x4.488 
30 

eV 
2x4.538 2x4 J87 

25 -
C3H5S/C2H5SH 

50 - CHjCH^^OO vj* = 0 
CHjCHiS^CX) Vj^ = 0 

40 - (b) 

2x36200 2x36600 
cm"' 

2x37000 

Fig. 2. (a) and (b) are the N2P-PFI-PE spectra for CH3CH2S measured in two independent 
scans in the energy region of 2 x (36 160-37 200) cm*' [or 2 x (4.483-4.612) eV]- Note that 
the PFI-PE signal [1(6")] is normalized by [I(hv)]^, where l((hv) is the laser energy signal. 
The arrows marked by "t" and "s" correspond to the ionization transitions CH3CH2S[ 
v(C-S) = 1] -> CH3CH2S^(i^ V) and CH3CH2S [A^A\ v(C-S) = 1] CH3CH2S^(X^A"), 
respectively. 
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[I(hv)]^, where I(hv) is the laser energy signal. The spectrum of Fig. 2(a) was recorded at a 

higher laser power and thus achieved a better signal-to-noise ratio than that of Fig. 2(b). The 

weak band at 2 x 37 060 cm*' is more visible in the spectnim of Fig. 2(a). However, we 

believe that Fig. 2(b) shows the correct relative PFI-PE band intensities based on comparison 

with other experimental scans. We note that efiforts made to record the N2P-PFI PIE 

spectrum of CH3CH2S were unsuccessful. The focusing of the UV laser beam as required in 

the present experiment may induce the absorption of additional photon(s) by CHsCHiS"*^ 

initially formed via the N2P-PFI process. This excitation is expected to cause further 

fragmentation, depleting the observable CHaCHiS"^ signal. 

The two dominant peaks observed at 9.107 and 9.077 eV have a width of ssO.OOS eV 

and are assigned as the formation of the CH3CH2S'̂ ( A" ^A") groimd state from the vibrational 

ground states of CH3CH2S( X ^A") and CH3CH2S( A ^A'), respectively. Two weaker peaks at 

energies 670 ± 30 cm"' higher than the two dominant peaks are discernible in the spectra of 

Figs. 2(a) and 2(b). The splitting of the weak peaks is similar to that of the dominant peaks. 

Since the formation of CH3CH2S'̂  involves the ionization of a nonbonding electron mostly 

localized at the S atom, the C-S bond is expected to be excited during the ionization process. 

These weaker peaks can thus be attributed to the formation of CH3CH2S'̂ ( X ^A", = 1) from 

CH3CH2S( X ^A") and CH3CH2S( A ^A'), where v represents the vibrational quantum number 

for the C-S stretching mode of CH3CH2S'* .̂ This assignment is supported by the ab initio 

[HF/6-31G(d)] frequency of 683 cm"' for obtained in the present study. The 

IE[CH3CH2S(J?^A")] = 9.107 ± 0.004 eV and IE[CH3CH2S(J?^A') = 9.077 ± 0.004 eV 
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obtained here aie in good agreement with the previous experimental and theoretical resiilts of 

8.97 ± 0.01 and 9.07 eV, respectively [5]. The energy gap between the CHsCHaSC X ^A") and 

CHsCHiSC A ̂ AO is determined to be 0.030 ± 0.004 eV. Such a small value is consistent with 

the theoretical calculations as stated above. Figs 2(a) and 2(b) seem to reveal other 

reproducible fine structures. However, the clear identification of these structures requires 

further studies at better signal-to-noise ratios. 

This assignment of the N2P-PFI-PE spectra of Figs. 2(a) and 2(b) suggests that the 

CH3CH2S radical is produced at both the A'̂ A" and states in the 248-nm 

photodissociation of CH3CH2SH. Assuming that the ionization cross-sections for 

CH3CH2S( X ^A") and CH3CH2S( A ^A') states are identical, the N2P-PFI-PE spectrum shows 

that the population for CH3CH2S(A''A") is less than that for CH3CH2S( ^4 ^A') by 30-50%. 

Although a detailed theoretical smdy has not been made on the photofiragmentation of 

CH3CH2SH, the formation of CH3CH2S + H may result firom excitation of a nonbonding 

electron at the sulfur atom to the anti-bonding orbital of the S-H bond in the parent molecule 

followed by a prompt S-H bond cleavage. As demonstrated in the formation of CH3S firom 

the UV photodissociation of CH3SH, the ejection of the light H atom results in a low 

rotational excitation for the heavier CH3S firagment."* Thus, we expect that CH3CH2S radicals 

formed in the UV photodissociation of CH3CH2SH contain low rotational energies. This 

expectation is confirmed by the narrow FWHM («30-50 cm"') observed for vibrational peaks 

in the PFI-PE spectrum, which can be used to estimate the rotational excitation of CH3CH2S. 
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The LIF study of CH3CH2S prepared in the 248-nm photodissociation of CH3CH2SH 

reveals prominent vibrational hot bands associated with the CS-stretching [v(C-S)] and CCS-

bending modes of CH3CH2S at 672.4 and 296.0 cm"', respectively.^ The expected positions 

of the hot band ionization transitions, CH3CH2S[A!'̂ A", v(C-S) = 1] CH3CH2S'̂ (J?^A") 

and CH3CH2S[ A ^A', v(C-S) = 1] CH3CH2S^ (X ^A") are marked by the arrows labeled as 

"t" and "s" in Fig. 2(b). The ionization hot bands due to excitation of the CCS-bending mode 

of CH3CH2S are also expected to exist Although weak PFI-PE peaks seem to exit at the 

expected positions of the hot bands associated with the CS-stretching vibration of CH3CH2S, 

we consider this correlation tentative because of the poor signal-to-noise ratios of the 

experimental spectra shown in Figs. 2(a) and 2(b). 

4. Conclusion 

The N2P-PFI-PE study reported here shows that the ratio for the population of the 

ground A'̂ A" state to that of the first excited electronic state is «0.6 for CH3CH2S 

formed in the UV photodissociation of CH3CH2SH. The EEs of CH3CH2S at the X ^A" and 

-4^A' states were determined to be 9.077 ± 0.004 eV and 9.107 ± 0.004 eV, respectively. 

This leads to a value of 0.030 ± 0.004 eV for the energy gap between the X ^A" and A ^A' 

states. The experimental value of 670 ± 30 cm"' for the CS-stretching mode of CH3CH2S'̂  is 

in agreement with the HF/6-31G(d) theoretical value of 683 cm"'. 
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CS2 NEAR THE CSz'̂ CX^naaiyi) THRESHOLDS 
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J.-C. Huang, Y.-S. Chetmg, M. Evans, C.-X. Liao, C. Y. Ng, C.-W. Hsu, P. Heimann, 
H. Lefebvre-Brion and C. Cossart-Magos 

ABSTRACT 

High resolution photoionization efiBciency (PIE) and pulsed field ionization 

photoelectron (PFI-PE) spectra for CS2 have been measured using coherent vacuum ultraviolet 

(VUV) laser radiation in the energy range of 81 050-82 100 cm*'. The PIE and threshold 

photoelectron (TPE) spectra for CS2 in the energy range of 80 850-82 750 cm*' have also been 

obtained using synchrotron radiation for comparison with results of the VUV laser study. The 

analysis of the PIE spectra reveals three Rydberg series converging to the excited CS2^(^ni/2) 

spin-orbit state. These series, with quantum defects of 1.430, 1.616 and 0.053, are associated 

with the [ Tl\r2\np(7u, [ ^\nt\npjtu and [ Tlini\nfu configurations, respectively. The Stark shift 

effect on the ionization threshold of CS2 has been examined as a function of dc electric fields 

(F) in the range of 0.65-1071 V/cm. The observed F dependence of the Stark shift for the 

ionization onset of CS2 is consistent with the prediction by the classical adiabatic field 

ionization formula. The extrapolation of the ionization onset to zero F yields accurate values 

for IE[CS2^(^n3/2)]. This study shows that in order to determine accurate lEs and to probe 

autoionizing structures for molecular species by PEE measurements, it is necessary to minimise 

the electric field used for ion extraction. The assignment of Renner-Teller structures resolved 
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in the VUV PFI-PE spectrum is guided by the recent non-resonant two-photon (N2P) PFI-PE 

and theoretical studies. The analysis of the PFI-PE spectrum also yields accurate values for 

IE[CS2^(^n3/2,i/2)]- Taking the average of the IE values determined by VUV-PFI-PE, N2P-PFI-

PE and Staik field extrapolation methods, we obtain a value of 81 285.7 ± 2.8 cm'* for 

IE[CS2^(^n3/2)]. For IE[CS2^(^ni/2)], we recommend a value of81 727.1 ± 0.5 cm*' determined 

by the Rydberg series analysis. A theoretical simtiladon of the ^03/2(00°) and ^ni/2(Oo®) VUV-

PFI-PE band profiles reproduces the observed branching ratio of 1.9 ± 0.3 for 

CS2^(^n3/2)/CS2^( ^^111/2). The relative intensities of vibronic structures observed in the VUV 

PFI-PE and TPE spectra are in agreement Evidence is found, indicating that the strongly (Stark 

field induced) autoionizing Rydberg state, I7pau, which is «10 cm"' below the IE of CS2, has a 

minor contribution to the observed profile for the X ^risaCOo^ PFI-PE band. 

I. INTRODUCTION 

Vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and threshold 

photoelectron (TPE) spectroscopy are important experimental techniques for the studies of 

photoionization-photoelectron dynamics and cation energetics.' These smdies in the past have 

mainly relied on laboratory discharge and synchrotron radiation sources.'"^ However, the low 

VUV intensities obtainable from traditional laboratory discharge lamps and second generation 

synchrotron radiation sources have limited the achievable resolution in most previous 

photoionization and TPE studies to »3-30 meV. The recent developments of coherent VUV 

lasers^"^ and third generation synchrotron radiation sources, coupled with an insertion device. 
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such as an undulator,^" promise to significantly improve the resolution in PIMS and TPE 

studies. 

Recently, a VUV monochromatized undulator synchrotron source associated with the 

Chemical Dynamics Beamline has been developed at the Advanced Light Source (ALS) of the 

Lawrence Berkel^ National Laboratory.''*'̂  By connecting a 6.65 m off-plane Eagle mounted 

scanning monochromator to the third generation synchrotron radiation source equipped with an 

undulator (10 cm period), it has been demonstrated that usable monochromatic VUV radiation 

with photon energy bandwidths of «l-2 cm*' (FWHM) can be achieved.'"" We note that the 

undulator synchrotron radiation at ALS is 99% polarized. In additional to its high resolution 

c^abili^, the major advantage of a synchrotron source, such as that of ALS, is the ease in 

tunability covering the full 6-24 eV photon energy range. When operated in the multi-bunch 

mode, a synchrotron source provides essentially cw radiation.''* 

Comparing the achievable energy resolutions, coherent VUV lasers are superior to 

synchrotron radiation sources. The generation of coherent VUV laser radiation in the energy 

range of 6.5-19 eV by four-wave mixing schemes in rare gases and in metal vapors can now be 

made routinelyUsing commercial dye lasers with resolutions of 0.03-0.2 cm"' (FWHM) 

in the visible photon energy range, the resolution for VUV generated by nonlinear mixing is 

expected to be in the range of 0.1-1.0 cm"'. '̂* A VUV laser system constructed using high 

resolution lasers has also been demonstrated, providing transform-limited spectral resolution."*"' 

Since a VUV laser system can be operated in individual laboratories, it is certain that VUV 

lasers will replace laboratory discharge lamps in laboratory photochemical studies. 
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Parallel to the development of high brightness VUV light sources, much technical 

progress has also been made in high resolution photoelectron spectroscopy.A high 

resolution cw monochromatized synchrotron source is well-suited for TPE and photoelectron-

photoion coincidence (PEPICO) studies.' The resolution of traditional TPE methods is mostly 

limited by the photon energy bandwidth." We expect that TPE and PEPICO studies can be 

made routinely at a resolution <3 meV using the ALS undulator synchrotron light sources. In a 

recent TPE study using a monochromatized synchrotron source with a wavelength resolution of 

0.03 A (FWHM), a resolution of wl meV for TPE measurements has been demonstrated.^" 

With the introduction of the laser piilsed field ionization photoelectron (PFI-PE) 

method," '* the energy resolution for photoelectron spectroscopy has been improved to sub-

waveniraibers, approaching that achieved in optical spectroscopy. The pulsed nature of a 

coherent VUV laser source makes it a natural photoionization source for time-of-flight (TOP) 

mass spectrometry and PFI-PE spectroscopy studies.'̂  It has been shown that a synchrotron 

radiation source, when operated in a few bunch mode, can also be used for PFI-PE studies. '̂"^ 

Recently, methods have also been introduced for the measurements of mass analyzed threshold 

ions (MATI) formed in the Stark field ionization of high-/? Rydberg species prepared by 

excitation using VUV laser '̂̂ ^ or cw synchrotron radiation.'" The advancement of the PFI-PE 

and MATI techniques are the most exciting developments in the field of VUV photoionization-

photoelectron spectroscopy. 

In this article, we present the results of a high-resolution photoionization efBciency 

(PIE) and PFI-PE study of CS2 near the CS2'̂ (A'̂ 113/2.1/2) thresholds using VUV laser 

techniques. The PIE and TPE spectra for CS2 have also been measured using the 
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monochromatized undulator synchrotron source at ALS for comparison with results of the VUV 

laser study. As shown below, the VUV laser and ALS synchrotron experiments provide 

complementary information about the energetics and dynamics for the photoionization of CS2-

When an autoionization Rydberg series is resolved in a high resolution PIMS 

experiment, covering a sufSciently large number of high-n Rydberg states, the analysis of these 

Rydberg states can lead to a highly accurate converging limit or IE. As a result of strong 

predissociation of high Rydberg polyatomic molecules formed in VUV excitation, autoionizing 

Rydberg features for polyatomic species are often not observable in PEE measurements. In such 

a case, IE values for the ground and/or excited vibronic states of a polyatomic species may be 

determined by the step-like onsets observed in the PIE spectrum. We note that strong 

autoionizing structures may obscure step-like onsets revealing the formation of excited ionic 

states. The PIE spectrum of CS2 near the CS2'*"(^ ^113/2,1/2) thresholds exhibits both rich 

autoionization features and step-like structures.^" '̂ 

The IE[CS2^(X ^113/2,1/2)] values determined by the step-like structures in previous high 

resolution PIE experiments^®"^® are lower than those obtained by photoelectron spectroscopy 

studies.^""^^ This discrepancy is most likely caused by the Stark field ionization effect.^ 

Furthermore, the IE[CS2Vni/2)] value deduced by the previous Rydberg series analysis^^ is not 

in agreement with those of the PIE^" '̂ and photoelectron spectroscopy^®"^^ studies. For this 

reason, we have measured the Stark shift of the photoionization onsets of CS2 as a fimction of 

electrostatic ion extraction field. Through a careful examination of the IE[CS2^( A!" ^113/2,1/2)] 

values determined by the VUV PEE, TPE, PFI-PE and Stark shift extrapolation methods, we 
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have obtained consistent and more accurate IE values for the formation of CSz 

fromCSaC '̂Sg^. 

The ground state of CS2 is linear >»ith the dominant electronic configuration:^^ 

The first vibrational excited levels for the symmetric stretch (vi), degenerate bend (V2) and 

asymmetric stretch (V3) of the CSaC-X" state are known to be 658.00, 395.99 and 1535.35 

cm*', respectively. '̂ The removal of an electron fix)m the highest occupied molecular orbital 

(i.e., 27tg) results in the formation of the linear CS2^( A' ̂ 113/2,1/2) ground state with the spin-orbit 

splitting constant known to be ^ = -440 cm''.^° The first excited vibrational levels for the 

symmetric stretch (vi"^, degenerate bend (v2^, and asymmetric stretch (V3^ for the CS2^ ground 

state are also known to be « 620,332 and 1195 cm*', respectively.^®"^^ 

The vibronic structures of CS^iX^Tlio^in) are of spectroscopic and theoretical 

interest '̂ The symmetry forbidden excitation of one quantum of V2'̂  was observed in previous 

photoelectron spectroscopy studies,^®"^^ an observation attributing to the interaction with an 

autoionization state. Since one quantum of is approximately equal to two quanta of vr in 

CS2^, substantial anharmonic coupling effects are expected. '̂*^ As a result of the Renner-

Teller effect and spin-orbit interaction, the V2* vibrational levels are expected to be split into 

two or more components.^®* '̂ Extensive information about the vibronic structures of 

CS2^(^ ^113/2,1/2) arising fiom Reimer-Teller effect and Fermi resonances have been obtained in 

previous gas phase emission"*^^^ and matrix isolation''̂ ''*^ studies. Due to the anharmonic 

coupling effects, unambiguous assigrmients of vibronic states to harmonic quantum numbers 
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are not possible. '̂ The recent non-resonant two photon PFI-PE (N2P-PFI-PE) spectrum 

obtained by Fischer et al.^ in addition to providing accurate lEs, has yielded partially resolved 

Renner-Teller structures for excitation to the (0,V2^0) levels of 082^(^113/2.1/2)- Since the N2P 

process requires considerable laser fluences, the occurrence of dissociation and multi-photon 

ionization processes can cause complications in the N2P-PFI study. For example, significant 

fragmentation of CS2^ due to the absorption of additional photons has prevented the PIE 

measurement for CS2^ 

It is well kno>vn that the intensity and shape of a TPE band can be affected by 

autoionizing states which &11 within the electron energy bandwidth used in the experimental 

study. We expect that optical allowed i0w-/1 Rydberg states close to an ionization threshold 

also have a similar effect on a PFI-PE band.'" This effect has not been examined in detail 

previously. A major goal of this study is to compare the Franck-Condon factors of vibronic 

bands observed in the VUV TPE and VUV-PFI-PE spectra of CS2. 

The rotational constants of «0.109 cm*' for CS2/CS2^ are too small for the present 

experiment to resolve the rotational structures associated with the 082^(^^113/2.1/2) 

photoelectron bands. We have performed a theoretical simulation of the observed VUV-PFI-

PE profiles for the 082^(^^03/2.1/2; Oo°) vibronic bands iising a method which has been 

successfiilly ^plied to simulating the VUV-PFI-PE spectra of C02.'̂  
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n. EXPERIMENT 

A. VUV laser photoionization and PFI-PE measurements 

The schematic diagram of the experimental seti^ is shown in Fig. 1. The experimental 

apparatus essentially consists of a tunable VUV laser source and a photoelectron-photoion 

apparatus'*'"'*^ for ion TOF and PFI-PE measurements. The experimental arrangement is similar 

to that used in our recent N2P-PFI studies/'*^ except that the ionization UV laser is replaced by 

a VUV laser system in this study. 

The VUV laser system is comprised of one excimer laser (Lambda Physik EMG201), 

two dye lasers (Lambda Physik FL3002) and a Hg oven. The XeCl (308 nm) output (200-250 

ml) of the excimer laser was split to pump the two dye lasers (Dye Lasers 1 and 2). The output 

frequencies ©i and ©2 of Dye Lasers 1 and 2, respectively, were mixed in the Hg oven using a 

proper mixture of Hg and Ar as the nonlinear mixing mediimi. In this experiment, the VUV 

frequencies used corresponded to the simi frequencies (SF) Icoi+coj. 

The design of the Hg oven is similar to that described previously.'̂  The oven is 

constmcted of a heated stainless steel tube (diameter = 3.76 cm) as the main cell with two 

water-cooled stainless steel side aims. The oven temperature was monitored by a thermal 

couple. The vapor pressiire of Hg in the oven was controlled by the oven temperature, which 

was in tum stabilized at 400 K using a temperature feedback circuit to regulate the electric 

power of the oven heater. The laser entrance and exit windows were made of quartz and MgF2, 

respectively. A series of ba£Qes with appropriate apertures was installed in the side arms to 

prevent diffusion of Hg vapor to the entrance and exit windows. Provision was made so that 

Hg, which condensed at the side arms and the apertures, returned to theHg cell. In this 
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FIG. 1. Schematic diagram for the experimental setup. Rhodamine 640 was used for Dye Laser 1 and was fixed at 15 982,1 cm '. The 
latter frequency was doubled to coi = 31 964.2 cm"' using a BBOl crystal. Coumarin 540A was used for Dye Laser 2 and was tuned in 
the range of (02 = 16 949-18 868 cm '. The sum frequencies 2(0| + (02 cover the range of 81 100-82 100 cm '. 
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experiment, Ar was introduced to the cell as the buffer gas through the inlets close to the exit 

window. 

Rhodamine 640 dye was used for Dye Laser 1 and its output was locked at 15 982.1 

cm*' (625.70 nm). This fundamental frequency was doubled using a BBOl crystal to generate 

the UV frequency of coi =31 964.12 cm"'. We note that the N2P transition frequency of Hg 

from the 6'5o ground state to the excited 7'iSb state is 2a)i = 63 92824 cm"'. For Dye Laser 2, 

Coumarin 540A was used to produce tunable frequencies in the visible range of a>2 = 16 949-

18 868 cm"' (530-590 nm). The dye laser beams with frequencies coi and <02 were merged in a 

laser-beam-combining prism (Karl Lambreht) and were further focused into the Hg oven using 

a lens with a focal length of 20 cm. The distance between the point of SF generation to the 

photoionization/photoexcitation (PI/PEX) region is 21 cm. 

To calibrate the laser firequencies, a small fraction of the dye laser (0)2) output was 

directed into a uraniimi hollow cathode tube with Ne as the bufifer gas. The Ne absorption 

spectrum recorded simultaneously during the experiment provided accurate calibration of the 

CS2 PIE and PFI-PE spectra. The bandwidth of the dye lasers is 0.2 cm"' for the fimdamental 

and aiO.4 cm*' for the second harmonic outputs. For a two-photon excitation, the resolution is 

aO.8 cm"'. Thus, the resolution for the VUV laser radiation generated by SF mixing is 

estimated to be <1 cm"'. The accuracy of photon frequencies given here is expected to be ±0.2 

-i cm . 

A photoelectric detector made out of copper was used to measure the VUV laser photon 

intensities. The detector was situated «15 cm from the PI/PEX region. In addition to 
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monitoiing the VUV light intensities, the photoelectric detector also served as a light tr^ for 

CDi, 0)2 and VUV radiations. Since no dispersive device, such as a monochromator, was used in 

this experiment, the contributions to the observed photoelectric current due to coi, 02 and VUV 

frequencies produced by tripling and difference frequency generation (i.e., 3co2 and 2a)i - (02, 

respectively) must be corrected. We found that the UV (cdi) and visible (C02) laser beams 

produced negligible photoelectric signals v^en the oven is at room temperature. The UV and 

visible laser beams start to diverge from the tightly focused spot in the center of the Hg oven. 

We estimate that the UV and visible laser beams have a diameter of «3 mm at the PI/PEX 

region. The observed photoelectric signal has a minor contribution from VUV radiation 

resulting from tripling and difference frequency mixing. The conversion efiBciency for 

frequency tripling is three orders of magnitude smaller than that for SF generation. The 

photoelectric contribution due to 3cd2 is insignificant and can be measured by blocking q)i. The 

sensitivities of the photoelectric detection for 3o>2 and 2©i - ci>2 should be significantly lower 

than that for SF 2g)i + (D2 in this experiment We found that the photoelectric spectrum 

recorded here is similar to the VUV spectrum in the same wavelength region obtained 

previously by SF generation in Hg under essentially the same experimental conditions. This 

observation suggests that the photoelectric signal due to difference frequency mixing is not 

significant 

During the aligimient of the lasers beams, the photoelectric detector was retracted so 

that the beam spots for the UV and visible (i.e., ooi and 0)2, respectively) beams could be 

monitored outside of the vacuum chamber. Since the diameter of the VUV laser beam 
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produced by SF generation is smaller than the UV and visible beams, due to the negative 

dispersion condition, the alignmoit of the UV and visible beams at the PI/PEX region also 

ensures the alignment of the VUV beam. 

The photoelectron-photoion apparatus used in this study has been described in 

detail."^ '̂̂  It is modified from the laser ionization TOF mass spectrometer used in previous 

photodissociation studies.'*'"^" A photoelectron detector, w^ch consists of a set of simple 

aperture lenses and a two-stage microchannel plate detector, has been added below the 

photoionization region and opposite the ion TOF tube. 

In this experiment, the CS2 molecular beam was produced by seeding the CS2 vapor 

(*270 Torr) at «18 °C in 1714 Torr of Ar and then expanding the mixture through the nozzle 

(diameter = 50 jim) of a pulsed valve operating at a repetition rate of 10 Hz. The CS2 sample 

was analytical grade obtained from Aldrich and was used without further purification. The Ar 

used was from Air Product and has a purity of ^9.995%. The molecular beam is skimmed by 

a conical skimmer (l-mm diameter, 3.8 cm from the nozzle) before intersecting with a tunable 

VUV laser beam (90°, 8.3 cm downstream from the skinmier). 

The molecular beam source chamber was pumped by a freon-trapped, 6 in. diffusion 

pimip (pumping speed «2,000 L/s), while the photoionization chamber and the ion-TOF tube 

were evacuated by turbomolecular pumps with pumping speeds of250 and 50 L/s, respectively. 

During the experiment, the beam source chamber and the photoionization chamber were 

maintained at pressures of »5 x 10*^ and «5 x 10'̂  Torr, respectively. 
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Ion detection using the ion TOF mass spectrometer has been described previously 

In this study, a constant electric field in the range of23-787 V/cm was used to extract the ions 

formed in the PI/PEX region. Using a dc ion extraction electric field at <23 V/cm was found to 

cause a significant loss in the ion detection sensitivi^. 

The PFI-PE detection scheme relies on delayed PFI of long-lived high-/z Rydberg states 

populated by laser excitation at a few wavenumbers below the ionization threshold. In this 

experiment, the firing of the excitation laser was delayed by 520 ^s with respect to the 

triggering pulse for opening the pulsed valve. The PFI-PE detection scheme proposed by 

Chupka^ was used in the present study. A reverse-biased dc field of 0.08 V/cm was used to 

sweep away any prompt electrons fix)m reaching the electron detector. After a typical delay of 

3.8 ^s with respect to the firing of the VUV laser, a forward-biased pulsed (duration = 1 |is) 

electric field of 0.24 V/cm was used to field-ionize the high-w Rydberg species as well as to 

extract the electrons to the microchannel plate detector. Using this PFI-PE detection scheme, 

we expect to achieve a resolution of iSiO.8 cm*'.^ ''̂  

Since the UV and visible lasers were not focused at the PI/PEX region, multi-photon 

ionization processes were not favorable. Furthermore, the photon energy range (>10.03 eV) of 

interest in this study is significantly higher than 30)2 and 2o)i - {02. Thus the photoion and PFI-

PE signals resulting fixjm the ionization of CS2 should be free from ion and electron 

backgrounds due to VUV radiation produced by tripling and difference frequency mixing. This 

was confirmed by the finding that negligible ion signals were observed when the heater for the 

Hg oven was off, or when one of the laser beams was blocked. 
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The firing sequence of die pulsed valve, dye laser and pulsed electric field is controlled 

by two digital delay units (Stanford Research DG535). The signals fit)m the electron detector 

(or ion detector) and the photoelectric VUV detector were fed into two identical boxcar 

integrators (Stanford Research SR250), v^ch were inter&ced to an IBM/PC computer. The 

electron (or ion) and VUV laser signals were averaged for 10 to 30 shots at each VUV laser 

firequency. The spectra shown here represent the averages of 4-5 independent scans obtained at 

the same experimental conditions. 

B. VUV synchrotron photoionization and TPE measurements 

The experimental arrangement and procedures used for PEE measxirements have been 

described previously in detail.'® The photoionization-photoelectron apparatus (end station 2) 

associated with the chemical dynamics beamline'*'" at the ALS was used. 

Smce the combined perforoiance of the UIO undulator, the 6.65 m off-plane Eagle 

monochromator and the associated deflecting and focusing optics will be presented in a separate 

article," only a brief description of their fimctions will be described below. The undulator 

radiation was deflected first by a water-cooled spherical mirror. A second retractable toroidal 

mirror directed the beam into the harmonic suppressor,®' which was essentially a differentially 

pumped rare gas cell designed to absorb unwanted higher harmonics emitted from the UIO. 

Using Ar as the filter gas, the harmonics at energies greater than 15.76 eV were essentially 

eliminated. That is, the synchrotron photoionization experiments of CS2 described here are firee 

fix)m effects of higher order VUV radiation. After passing through the harmonic suppressor, the 

ftmdamental VUV beam was deflected and focused by a bendable cylindrical mirror (M4) 

followed by a second cylindrical mirror focusing onto the entrance slit of the 6.65 m off-plane 
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Eagle mounted monochromator. To operate in the energy range of 6-24 eV, the grating of the 

monochromator was required to rotate and translate. In order to maintain the horizontal focus 

of the VUV beam at the exit slit of the monochromator, the focal length of M4 was adjusted. 

The dispersed VUV light firom the exit slit of the monochromator was further focused by a 

toroidal mirror into the photoionization region of the qiiadruple mass spectrometer (QMS) (or 

the TPE spectrometer) of End Station 2 during the PIE (or TPE) measurements. The focused 

VUV photon spot in the PI region was <1 mm^. During the experiment, the peak of the UIO 

undulator fundamental radiation was tuned within 02 eV of the photon energies of interest 

The photon energies were further selected by scanning the monochromator around the peak of 

the undulator fundamental radiation. 

Due to the high brightness of the undulator synchrotron beam at the ALS, there was 

little obstruction of the VUV beam when a 25-{im entrance slit was used. The grating 

employed in this study was a MgF2 coated 1200 1/mm grating with a dispersion of 1.24 A/mm. 

We have recorded the PIE spectrum of NO using entrance and exit slits of 10 }im, 

corresponding to a nominal wavelength resolution of AX = 0.0124 A (AE a 0.09 meV). The 

width (AE = 0.2 meV FWHM) observed for the autoionization features of NO at A,« 1325 A (or 

E w 9.357 eV) indicated that the actual resolution achieved was AE/E « 47 000, more than a 

factor of two poorer than the nominal resolution. The PEE spectra reported here were obtained 

using entrance and exit slits of IS-jim, corresponding to an actual resolution of 0.3 meV 

(FWHM). The TPE measurements were made using 50 ^m entrance and exit slits and were 

expected to achieve a resolution of 1.0 meV (FWHM). 
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The pine CS2 beam was fonned by siq)ersonic expansion using a stainless steel nozzle 

at a stagnation pressure of »300 Torr and by a double-dififerentially pumped beam production 

system. A circular skimmer of 1-mm diameter was used between the first and second 

di£ferentiaUy pumped chambers. The first and second differentially pumping chambers, 

evacuated by turbomolecular pumps (Seiko Seiki) with pumping speeds of 2000 and 1200 L/s, 

maintained pressures of »6 x 10"* and 9x10"^ Torr, respectively, during the experiment. 

For PIE measurements, the CS2 beam thus formed entered the QMS spectrometer 

through a 3-mm diameter aperture along the central axis of the ion optics of the QMS. The 

QMS detector was divided into two difTerentially pumped chambers which were separated by a 

6.35-mm aperture. The VUV photon beam and the CS2 beam intersected at 90° in the 

photoionization region located in the first differential pumping chamber of the QMS 

spectrometer. After passing through the photoionization region, the VUV beam was intercepted 

by a silicon photodiode, firom vAich the photon flux was measured. During the experiment, the 

chamber wall separating the first and second differential pumping chambers was kept at «77 K 

by filling liquid nitrogen in the jacket of the chamber wall. The first and second chambers of 

the QMS were evacuated by turbomolecular pumps (Seiko Seiki) with pumping speeds of 400 

and 1000 L/s that maintain pressuo^ of »5 x 10"^ and 1 x 10'̂  Torr, respectively. 

The TPE spectrometer used here was a simple steradiancy analyzer. The 

photoionization region of the TPE spectrometer was located in the main chamber of the 

photoionization-photoelectron apparatus and was separated fix}m the photoionization region of 

the QMS spectrometer by 12.75 cm. The central axis of steradiancy ZEKE analyzer was 

perpendicular to the VUV photon beam, the CS2 molecular beam and the central axis of the 
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QMS. The lower part of the steradiancy analyzer was situated in the photoelectron chamber, 

^^ch was evacuated separately by a turbomolecular pump (Seiko Seiki) with a pumping speed 

of 400 Us and maintained a pressure of »i x 10'̂  Tort during the experiment In the present 

study, the entrance and exit £q)ertures of the steradiancy analyzer used have a diameter of 3 mm. 

A repeller field of M).l V/cm was used at the PI region to collect the TPEs toward the 

steradiancy analyzer. A set of dual-channel plate located at the end of the steradiancy analyzer 

was used as the electron detector. 

The photon energy steps used here varied in the range of 0.1-0.5 meV and the CS2^ ion 

and TPE cotmting times at each step varied fix)m 1 to 4 s. The ion and TPE intensities reported 

in the present study were normalized by the corresponding VUV light intensities. As indicated 

above, a silicon photodiode was used as the VUV detector. Since the photon energy region 

covered in this experiment was narrow, we expect that variation in the detection efficiency of 

the silicon photodiode was minor and no attempt was made to correct the VUV photon energy 

response of the silicon detector. 

Since the energy scale for the PIE spectrum of CS2 measured using the VUV laser is 

known to ±0.2 cm"', we have calibrated the energy scale of the PEE (and TPE) spectrum 

obtained at ALS by normalizing the positions of the autoionizing Rydberg features observed in 

the synchrotron experiment to those measured in the VUV laser study. 
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m. RESULTS AND DISCUSSION 

A. Static shift effect and Rydberg series resolved in the PIE spectrum 

Figure 2(a) depicts the PIE spectrum for CS2 in the energy region of81 200-81 800 cm"' 

(10.067-10.142 eV) measured using the VUV laser radiation and a dc Stark field (F) of 

23 V/cm. This energy region covers the EEs for the formation of the 082^(^113/2.1/2) spin-orbit 

states. The PIE spectra for CS2 obtained using the VUV laser radiation and F= 158 and 

787 V/cm near the ionization threshold are also included in the figure [see Figs. 2(b) and 2(c), 

respectively]. 

The Stark shift effect on the PIE spectrum of CS2 can be examined at significantly lower 

electrostatic fields using the QMS spectrometer arrangement at ALS. The fact that the CS2 

beam is traveling along the central axis of the QMS makes possible the collection of nearly all 

CS2^ formed in the photoionization region by using a small electrostatic field. The PIE spectra 

for CS2 in the region of 80 890-82 260 cm"' (10.03-1020 eV) obtained at ALS using F = 0.65, 

220, 583 and 1071 V/cm are shown in Figs. 3(a)-3(d). We note that the ionization onsets for 

the PIE spectra of Figs. 3(a)-3(d) rise more gradually than those observed in Figs. 2(a)-2(c), 

suggesting that the rotational and vibrational temperatures of the CS2 beam formed using a 

pulsed nozzle are lower than those produced using a cw nozzle. 

The PIE spectra of Figs. 2(a)-2(c) and 3(a)-3(d) clearly show that the IE values 

determined using a finite repeller field (or F) at the photoionization region are lower than the 

"true" IE. According to the classical formula, adiabatic Stark ionization is predicted to lower 

the IE by 6.1(F)cm"', \Adiere F is in V/cm. We have plotted in Figs. 4(a) and 4(b) the 

ionization onset (or nominal IE)asafimctionofF"^ observed in the PIE spectra measured 
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FIG. 2. PIE spectra for CS2 in the energy range of 81 200-81 800 cm"' (10.067-10.142 eV) measured using VUV laser radiation and dc 
Stark fields (a) F = 23 V/cm, (b) F = 158 V/cm and (c) F = 787 V/cm. Photon energy resolution is «1 cm ' (FWHM). 
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FIG. 3. PIE spectra for CS2 in the energy range of 80 890-82 260 cm ' (10.03-10.20 eV) measured using monochromatized undulator 
synchrotron radiation and at (a) F = 0.67 V/cm, (b) F = 220 V/cm, (c) F = 583 V/cm and (d) F = 1071 V/cm. Photon energy resolution 
achieved for the PIE measurements = 0.3 meV or 2.4 cm"' (FWHM). The TPE spectrum for CS2 in the energy range of 10,055-10,260 
eV obtained at F = 0.1 V/cm is plotted in the bottom of the figure. Photon energy resolution achieved for the TPE measurements = 
0.5meVor4cm"' (FWHM). 
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FIG. 4. Plots of nominal IE versus observed in the PIE spectra obtained using (a) VUV 
laser radiation and (b) monochromatized undulator synchrotron radiation. The linear least 
square fits yield slopes of -5.6 ± 0.4 and -6.3 ± 0.3 and intercepts (i.e., IE values at F = 0) of 
81 287 ± 5 and 81 285 ± 7 cm*' for the plots in (a) and (b), respectively. 
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using the VUV laser and syncfaiotron source, respectively. Here, the nominal IE is taken to be 

the mid-point of the steep rise of the photoionization onset The uncertainties represent the 

photon energy spans of the steep rises. The respective slopes for the linear square fits of the 

plots in Fig. 4(a) and 4(b) are -5.6 ± 0.4 and -6.3 ± 0.3, in good agreement with the classically 

predicted value of -6.1 after taking into account the experimental uncertainties. The 

extrapolation of the linear plots to F = 0 V/cm in Figs 4(a) and 4(b) yields values of 81 287 ± 5 

and 81 285 ± 7 cm*', respectively, for the "tme" IE[CS2^(X ^113/2)]. These values are in 

excellent accord with the IE value of 81 286 ± 5 cm"' obtained in the recent N2P-PFI-PE study 

of Fischer et al?  ̂

In addition to having the effect of lowering the ionization onsets, a high F used also 

induces broadening or mixings of high-n Rydberg levels. Thus, the PIE spectrum measured at 

F = 0.67 V/cm [Fig. 3(a)] represents the least perturbed spectrum. In accord with the previous 

experiments,^®"^ the PIE spectrum of Fig. 3(a) exhibits a second step at 10.133 eV 

corresponding to the IE[CS2^(^ni/2)]. However, this step is not evident in the PIE spectrum 

[Fig. 2(a)] obtained using the VUV laser. The signal-to-noise (S/N) ratios for the PIE spectrum 

of Fig. 2 in the energy region of 10.129-10.142 eV are poor due to low VUV laser intensities. 

The fluctuation of the PIE data is partly due to the poor S/N ratios for the photoelectric signals 

of the VUV light detector. When the VUV signal is low and comparable to the background 

noise of the VUV light detector, the correction of the background of the photoelectric signal is 

also more difScult The stronger autoionizing resonances observed in the spectrum of Fig. 2(a) 

compared to those resolved in Fig. 3(a) can be attributed to the higher resolution of the VUV 

laser than that of the monochromatized synchrotron radiation. Comparing the spectra of 
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Figs. 3(a) and 3(d), we conclude that the onset for the formation of CS2^(^ni/2) is also lowered 

by a Stark shift comparable to that observed for the CS2^( AT ^Ila/z) onset 

Complex autoionizing structures are evident in the PIE spectrum of Fig. 2(a). The 

positions [v(n) cm''] of the most prominent autoionization Rydberg series (series I) for CS2 

identified in the PIE spectrum are listed in Table I. We note that the first three members [v(n) = 

81 127.3, 81 210.4 and 81 274.8 cm''] of series I are observed in the Stark shifted PIE spectra 

of Figs. 2(a)-2(c) and Figs. 3(d). The positions of these states may be perturbed by the applied 

electric fields. The v(n) values listed in Table I have not been corrected for the Stark shiit and 

mixing effects. The v(n) value at 81 127.3 cm"' determined by the PIE spectrum of Fig. 3(d) is 

expected to be less accurate than the other v(n) values determined by the PIE spectra measured 

using the VUV laser. We estimate that the uncertainties for the v(«) values determined by the 

PIE spectra of Figs. 2(a)-2(c) are ±0.5 cm"'. The positions of some of these Rydberg states have 

been observed previously in absorption^^*^^ and PIE studies.^^ The v(/2) values reported 

previously by Ono et al.^ have uncertainties of ±10 cm"' and are in agreement with the results 

of this study after taking into account the experimental uncertainties of both experiments. We 

have fitted the observed \(n) values [except v(«) = 81 127.3 cm"'] to the Rydberg formula, 

v(/7) = IE[CS2"('n,/2)] - Ry/(n - ^)^ (1) 

where Ry is the Rydberg constant (109 737.3153 cm"') and n is the quantum defect Assuming 

that ^ is constant, we have obtained by the least square fit a value of 81 727.1 ±0.1 cm*' for the 

converging limit of series I (see Fig. 5). However, since the laser energy calibration is only 

accurate to 0.2 cm*', we have conservatively assigned imcertainties of ±0.5 cm"' for the 
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Table I. Autoionizing Rydberg series I, n and HI converging to the excited CS2Vni/2) spin-
orbit state. 

(cm'') n {=n- n)'' 

Rydberg series I ^Tlialiipai, 
15 81 127.3' 13-526 1.474 
16 81 210.4'' 14.573 1.427 
17 81 274.8® 15.576 1.424 
18 81 327.5 16.572 1.428 
19 81 371.7 n.512 1.428 
20 81409.0 18.574 1.426 
21 81440.7 19.574 1.426 
22 81 467.8 20.572 1.428 
23 81 491.3 21.573 1.427 
24 81511.8 22.576 1.424 
25 81 529.5 23.566 1.434 
26 81 545.3 24.569 1.431 
27 81 559.1 25.558 1.442 
28 81 571.9 26.591 1.409 
29 81 582.5 27.548 1.452 
30 81 593.0 28.606 1.394 
31 81 602.0 29.617 1.383 
00 81 727.1 ±0.5'" 1.430® 

Rydberg Series n ̂TL\n\rtfu 
14 81 165.0' 13.972 0.028 
15 81 234.8' 14.930 0.070 
16 81 296.7 15.968 0.032 
17 81 345.4 16.956 0.044 
18 81 386.2 17.942 0.058 
19 81 421.9 18.962 0.038 
20 81 450.6 19.922 0.078 
21 81477 20.947 0.053 
22 81499 21.934 0.066 
23 81 519 22.964 0.036 
24 81 535 ± 1 23.901 0.099 
25 (81 551 ± 1) 24.963 0.037 
00 81 727.1 ±0.5^ 0.053® 



www.manaraa.com

80 

Table L (contmued) 

vCnlVcm-') u" 

Rydberg series HI ^Ih/i^npnu 
17 81 264.0® 15.394 1.606 
18 81 316.2 16.342 1.658 
19 81 363.6 17.375 1.625 
20 81 401.5 18.358 1.642 
21 81 437.0 19.449 1.551 
22 81 463.1 20.388 1.612 
00 81 727.1 ±0.5^ L616« 

^Principal quantum number. 
''Position of autoionizing Rydberg states observed in the PIE spectrum of CS2 shown in Fig. 2. 
Unless specified, the uncertainties of these positions are ±0.5 cm*'. 

"Effective quantum number n = n - \l, where |x is the quantum defect. The n' values are 
calculated according to the Rydberg equation: v(n) = IE[CS2(^ni/2)] - Ry/(ny, where 
IE[CS2^(^ni/2)] = 81 727.1 ± 0.5 cm"* is used as the converging limit and Ry = 109 737.3153 
cm*' is the Rydberg constant 

''The ji values for Rydberg series I, II and III are determined by the assignments of these series. 
The IE[CS2(^ni/2)] = 81 727.1±0.5 cm"' is used as the converging limit See the text 

®The observation of these autoionizing Rydberg states are induced by the Stark shift effect 
These positions have been not corrected for possible perturbation by the Stark fields. 

fe[CS2^(^ni/2)] = 81 727.1 ± 0.5 cm"' is determined by the least square fitting the observed 
v(«), n = 16-31, values for series I to the Rydberg Eq. (1). This value is used as the converging 
limit for Rydberg series K and m in the calculation of n values. 

^Average ja valiies. 
'̂ y fitting the v(n) values for series II to the Rydberg formula [Eq. (1)], we obtain a value of 
81 726.3 ± 1.0 cm"'. See the text. 
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FIG. 5. Least square fit (solid line) of the experimental v(n) values (•) to the Rydberg formula 
[Eq.(l)]. The best fit yields 81 727.10 ± 0.09 cm"' for the converging limit and 1.427 for the 
average n. Taking into account the accuracy of ±02 cm"' for the energy calibration, we 
recommend IE[CS2'̂ (^ni/2)] = 81 727.1 ± 0.5 cm"'. See the text. 
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convergmg limit, i.e., IE[CS2^(^niy2)]. Hie effective quantum nimibers n' (=n - n) for the 

corresponding v(n) states of series I are calculated in Table 1. The IE[CS2^(^ni/2)] value 

determined by the converging limit of Rydberg series I agrees with the results determined by 

Stark shift extrapolation given above and by the N2P-PFI-PE studies.^" However, the accuracy 

for the IE value determined by the Rydberg series analysis is significantly higher than that 

obtained by other methods. 

Based on the dipole allowed selection rule and a.ssuming that the Rydberg states of 

interest here converge to the excited €82^(^111/2) spin-orbit state, we expect that the symmetries 

of these Rydberg states formed by excitation firam the vibrationless CS2(^ 'SgO ground state 

are derived from the "ITg ion core and an imgerade (e.g., p oxf) Rydberg electron. It is generally 

accepted that Rydberg series I listed in Table I are associated with the ^Ti\a\npcsu 

configuration. '̂̂ ^ This assignment yields an average n of 1.427. Including the calculated ji = 

1.474 for n = 15, we obtain an average fx value of 1.430 (see Table I). The latter value is in 

accord with the expected |a. value for an n/^•Rydberg series for simple suliur-containing 

molecules.^^ The irregularity in intensity observed for the autoionizing Rydberg states of series 

I can be attributed to perturbations due to predissociation. 

In addition to Rydberg series I, many weaker autoionizing features are also resolved in 

the PIE spectrum of Fig. 2(a). We have been able to group some of these weaker features into 

Rydberg series n and HI converging to IE[CS2^(^ni/2)]. The v(n) values for series H and HI are 

also listed in Table I. The observations of the first two members [v(/2) = 81 165.0 and 81 234.8 

cm*'] of series n and the first member [v(n) = 81 264.0 cm"'] of series HI are induced by the 
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Staik field. Unless specified, the uncertainties of these values are ±0.5 cm*'. The n values for 

series I and n are calculated according Eq. (1) with IE[CS2^(^ni/2)] = 81 727.1 cm"'. On the 

basis of this analysis, we have associated Rydberg series n with the ^Yl\n\nfu configuration 

having an average n = 0.053. When v(w) values for series n are fitted to Eq. (1), the least 

square fit yields a converging limit of81 726.3 ± 0.5 cm'*. Taking into accoimt the accuracy of 

±0.2 cm*' for laser fiequency calibration, we have assigned uncertainties of ±1.0 cm*' for the 

latter converging limit That is, an independent fit of series U to the Rydberg formula leads to 

IE[CS2^(^ni/2)] = 81 726.3 ±1.0 cm*'. The latter value is consistent with, but less accurate than 

the value of 81 727.1 ± 0.5 cm*' determined using series I. In the recent resonance enhanced 

multi-photon ionization (REMPI) study of Morgan ef Rydberg members, n = 4-10, 

belonging to the ^Tl-ii2,\r2\nf <- X Rydberg series have been identified. These ^Thri,\a]nf 

transitions have not been observed in previous absorption studies.^^"^^ Similar Rydberg states 

have also been identified in absorption and REMPI studies of Since the average |i value 

of 0.053 for Rydberg series II identified here is consistent with that of 0.07 found for the 

series observed by Morgan et al.^^ we conclude that the ^U.\r2\nf, « = 4-10, Rydberg 

states identified in the REMPI study are lower members of Rydberg series 11. 

Rydberg series III has an averse value of 1.616, characteristic of an np-series. The 

previous experimental analysis^ indicates that the value for an rtpjCu series is greater than that 

for an np<Ju series. Thus, we have assigned Rydberg series m as a ^Tl\a\np7Uu series. 

Following this assignment, we may conclude that the autoionizing intensities for the np<Ju states 

are significantly stronger than those for the npTCu states, presumably due to different efiSciencies 
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in piedissociation. The high resolution absorption study currently in progress '̂ should shed 

light on this interpretation. 

Other minor autoionizing structures i^ch are not members of series I, n and m are 

likely members of Rydberg series converging to higher vibronic states of CS2^ Weak 

autoionizing Rydberg structures are also evident at energies above IE[CS2^(^ni/2)]. The 

autoionizing features resolved in Figs. 2(a) and 3(a) indicate that predissociation becomes more 

important at energies above wlO.l 17 eV. 

B. Assignment of vibronic structures and simulation of the origin band rotational 

contour resolved in the VUV-PFI-PE spectrum 

Figure 6 shows the VUV/PFI-PE spectrum for CS2 in the energy region of 81 100-

82 100 cm*'. This energy region covers the transitions from vi = 0-1, V2 = 0-2, V3 

= 0) to 082^(^113/2,1/2; vi"^ = 0-1, V2^ = 0-2, = 0). For a linear molecule, such as 

082^(^03/2,1/2), with V2^ bending quanta, the vibrational angular momenta along the molecular 

axis can have values of /yh, where /y = V2^ V2^-2,..., 0 or 1. Since the electronic orbital angular 

momentum has a nonzero projection of Kh along the molecular axis, the Renner-Teller 

coupling between A and 1-, forms a new quantum niraiber, K= | A ± /y I • Including coupling to 

the projection of the spin angular momentum on the molecular axis, Z, the total projected 

angular momentum is P = A + /y + 2. We expect that vibronic structures involving V2^ > 2 may 

have complex patterns. The N2P-PFI-PE study'® has resolved the Renner-Teller splitting for 

the A3/2 and Z1/2* components of the (0,V2^ =1,0) state. The recent theoretical investigation^® of 
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FIG. 6. VUV/PFI-PE spectrum for CS2 in tlie energy region of 81 100-82 100 cm ' obtained using VUV laser radiation and a pulsed 
field of 0.3 V/cm. See the text for the assignments of the vibronic structures. Peaks a and b marked in the figure are unassigned. 
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the 082^(^113/2,1/2) Renner-Teller system has rendered insight into the characteristics of the 

vibronic states observed in previous experimental studies.^®'"^"^^ In many cases, the assignment 

of the vibronic structure to a "pure state" is not possible. 

The positions of vibronic structures resolved in the VUV-PFI-PE and N2P-PFI-PE 

spectra are compared in Table II. These positions have been corrected for the Stark shifts of 1.5 

cm"' in the present study and 3.7 cm"' in the N2P-PFI-PE experiment^" The predicted positions 

based on the theoretical calculations of Ref. 38 and the known energies for the (vi,0,0) and 

(0,V2,0) levels '̂ are also included in the table. We have assumed that the CS2^(^ ^113/2; 0,0,0) 

<- CS2( '̂2g^; 0,0,0) transition energy is equal to 81 284.8 cm*'. The comparison of the 

vibronic structures resolved in the spectrum of Fig. 6 and N2P-PFI-PE spectrum of Fischer et 

al. indicates that the resolution attained in the present experiment is slightly higher, allowing the 

identification of additional Renner-Teller structures. The slightly higher resolution achieved 

here is most likely due to the lower pulsed field (0.24 V/cm) used in this experiment compared 

to that of 1-2 V/cm used in the N2P-PFI study The assignments of the vibronic structures 

given in the spectrum of Fig. 6 and in Table n are mostly based on those of the N2P-PFI-PE and 

theoretical studies.^®"^* Nearly all the vibronic transitions identified in the N2P-PFI-PE 

spectrum are also found in the VUV-PFI-PE spectrum. As shown in the table, the positions of 

vibronic features identified in the N2P-PFI-PE spectrum differ from those found in the VUV-

PFI-PE spectrum by ^ cm"'. 

The n3/2(Oo°) and ni/2(Oo°) bands are identified at 81 284.8 and 81 725.9 cm"' with 

widths of 4.7 and 3.5 cm"' (FWHM), respectively. '̂ Thus, the VUV-PFI-PE spectrum yields 
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2 Table II. Comparison of experimental and calculated vibronic PFI-PE bands of CS2 (113/2,1/2) 

Experimental Energy (cm ) 
Assignment VUV/PFI-PE'* N2P-PFI-PE® Ref 38 

^n3/2(Vi\v2V3^) <- 'Zg^(Vi,V2,V3) 
(0,0,0.) <-(0,1,0) e 80 888 80 886.6 
(0,2.0)'n,/2 <- (0,2,0)'£g' f 81 164 81 166.3 (81 148.9)8 
(0,2,0)'n,/2<-(0,2,0)'Ag 

f 81 176.3(81 158.9)8 
(0,2,0)'(D7/2<-(0,2,0)'Ag f 81 177.5 (81 166.8)8 
(0,2,0)'n3/2<-(0,2,0)'2g" f 81 180.3(81 177.8)8 
(0.2.0)'n3/2<-(0,2,0)'Ag f 81 190.3(81 187.8)8 
(0,l,0)'Z,/2"<-(0,1,0) 81 217.6 81 222 81 226.4 
(0,1,0)^,2 <-(0,1,0) 81 225.7 81 231.4 
(1,0,0) <-(1,0,0) 81 242.6 81 244 81 220.1 
(0,0,0) <- (0,0,0) 81 284.8 81286 81 284.8'' 
(0,1,0)'E,/2'<-(0,0,0) 81 613.1 81 618 81 622.4 
(0,l,0)%/2<-(0,0,0) 8I6I8.I' 81 627.4 
(1,0,0) <-(0,0,0) 81 901.1 81900 81 899.8 

81 930.7^ 
(0,2,0)'n„2<-(0,0,0) 81 950.9 81 950 81 968.3 
(0,2,0)^07/2 (0,0,0) 81 958.8' 81 969.5 
(0,2,0)'n3/2^ (0,0,0) 81 979.8 81 982.3 

00 -4 
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Table II. (continued) 

Experimental Energy" (cm ) Calculated Energy (cm ) 
Assignment VUV/PFl-PE" N2P-PFI-PE''" Ref.38 

^ni/2(V|\v2^V3^) 'Sg^(Vi,V2,V3) 

81 322.4^ 
(0,0,0) <-(0,1,0) 81 329.9'' 81 328 81 329.9 
iOa,Of0sa ^ (0.2,0)'Ag 1 81 564 81 593.7 
(0,2,0)2n3/2<-(0,2,0)'Zg" 1 81 629.1 
(0.2,0)2n,/2<-(0,2,0)'Zg" 1 81 633.6 
(0,2,0)^n3a<-(0,2,0)'Ag 1 81 639.1 
(0,2,0)'n,/2 <- (0,2,0)'Ag 1 81 643.6 
(0,1.0)^/2 <-(0,1,0) 81651.3 81 648 81661.9 
(0,1.0)'Z,/2<-(0,1,0) 81 672.6 81670 81 681.9 
(1,0,0) <-(1,0,0) (81 689)"" 81 686 81 686.9 
(0,0,0) <- (0,0,0) 81 725.9 81 726 81 725.9" 
(0,1.0)%,2<-(0,0,0) 82 047.2^ 82 046 82 057.9 
{0.1,0)^Z,/2"<-(0,0,0) 82 068.3 82 068 82 077.9 

"Values have been corrected for the Stark shifts of 1.5 cm"' and 3.7 cm"' for the VUV-PFI-PE (this work) and N2P-PFI-PE studies 
(Ref. 30). 

*^8 work. 
'Reference 30. 
"'The calculations use the known transition energies: (vi = 1,0,0) (658.0 cm '), (0,V2 = 1,0) (396,0 cm"'), (0,V2 = 2,0) 'Ag (792 cm"') and 

(0,V2 = 2,0) 'Zg^ (802 cm"') of Ref. 36 and the vibronic energies for CS2^(X ^113/2,1/2; v/, V2^) given in Ref 38. 
®Not covered in the energy range of the present study. 
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Table II. (continued) 

r ^ 

Multiple peaks are resolved in the predicted energy range for these transitions. See Fig. 8 for comparison between predicted positions 
and experimental structures. 

^Values calculated using the vibronic level energies for CS2('2g^; 0,2,0) [see footnote (d)] and CS2^(^n3/2; 0,2,0). From the analysis of 
the ^n3/2(2o^) vibronic band, we obtained the Renner-Teller level energies of666,674 and 695 cm"' for (0,2,0) ^ni/2, (0,2,0) and 
(0,2,0)^113/2, respectively, for €82^(^113/2; 0,2,0) [measured with respect to 082^(^113/2; 0,0,0)]. 

''IE[C82^(^n3/2)l determined by the VUV-PFI-PE specboim. 
'The assignments of 81 618.1 and 81 958.8 cm"' to the transitions (0,1,0) %/2 <- (0,0,0) and (0,2,0) <r- (0,0,0) are questionable 
because these transitions are highly forbidden. 

^Unassigned. 
''Tentative assignment. 
'The peak maximum of the experimental feature is at 81 574.5 cm"'. The detailed Renner-Teller components cannot be identified due 
to poor S/N ratios. 

•"Estimated value. 
"IE[CS2^(^ni/2)] determined by the VUV-PFI-PE spectrum. 
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EECSa^CX^n^)] = 81284.8 ± 4.7 cm"' (10.0780 ± 0.0006 eV) and lELCSiYni/z)] = 81 725.9 

± 3.5 cm"' (10.1327 ± 0.0004 eV), in excellent agreement with the values determined by the 

N2P-PFI-PE, the Rydberg series and the Stark shift ectrapoiation methods. The difference 

between the ^TljaiOo^ and ^ni/2(Oo°) bands observed here gives a value for A = -441.1 ± 0.5 

cm"', again in agreement with the literature value of -440 

We have compared the structures of the ThaiOo^ and niy2(Oo°) bands in Fig. 7(a). The 

branching ratio for the production of CS2^( '̂̂ 113/2) to that of CS2^(^ni/2) is estimated to be 1.9 

based on the measured ratio for the intensities of the ^n3/2(Oo°) and ^ni/2(Oo°) bands. The main 

difficulty in the determination of the relative intensities for the ^n3/2(Oo°) and ^ni/2(Oo°) bands is 

the low VUV light intensities at the energy range of the ^ni/2(Oo°) bands, thus making it difficult 

to make the background correction for the photoelectric detector. We estimate the uncertainties 

for the ratio of the intensities to be ±0.3, i.e., the branching ratio for CS2^(^n3/2)/CS2^(^ni/2) = 

1.9 ±0.3. 

A simulation of the ^n3/2(Oo°) and ^ni/2(Oo°) band profiles has been made by calculating 

the absorption spectrum of CS2 near the CS2^( A!" ^113/2,1/2) thresholds corresponding to a 

superposition ofp+f complexes for a very large value of n. This method has been used with 

success for simulating the PFI-PE of C02.'*^ The values for the transition moments to the p and 

/ states are taken fi:om ab initio calculations,®' which have been slightly corrected to agree with 

the absorption spectnmi of the first np and nf complexes. '̂ The respective transition moments 

of the pr^lL, p<^Yl, and f^H states are 3.0, 1.0, 2.32, 2.82 and 1.43. The mean EE 

has been fixed at 81 506 cm"', while the known A = -440 cm"' is used. The rotational 
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FIG. 7. (a) Comparison of the Oo° bands for CS2^(^n3/2) (—) and CS2^(^ni/2) (solid line) observed in the VUV-PFI-PE spectra 
obtained using VUV laser radiation and a pulsed field of 0.3 V/cm. The ratio of the peak intensities yield a branching ratio of 1.9 ± 
0.3 for the production of 082^(^113/2) and CS2^(^ni/2). (b) Simulated profiles for the ^n3/2(Oo°) (—) and ^ni/2(Oo°) (solid line) bands. 
Rotational temperature = 10 K. The linewidth used in the simulation is similar to the experimental width of i«l cm '. The upper and 

ft 0.. (\ 
lower energy scales apply to the n3/2(0o ) and ni/2(0o ) bands, respectively. See the text. 
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constants®" used for CSzC A : " a n d  C S 2 ^ ( X  ̂ 113/2.1/2) are 0.109126 and 0.10914 cm*', 

respectively. The calculation also assumes a rotational temperature of 10 K for CSjC X 

T\^thout considering the lifetimes of the Rydberg states, the calculated ^n3/2(Oo^ and 

^ni/2(Oo®) bands for n = 2000 have equal areas or equal intensities as observed in the Hel 

photoelectron spectrum for €82. '̂ Each of these band profiles consists of two peaks; one on the 

left and one on the right ^^ch correspond to the negative and positive branches of AJ = - J", 

respectively, ^ere T' and J" are the total angular momentum for €82^ and CS2. In order to 

explain the observed branching ratio of 1.9 ± 0.3 for CS2^(^n3/2)/CS2^(^ni/2), it is necessary to 

take into account the decay by spin-orbit and rotational autoionization of the rotational levels 

using the method described in Ref. 62 and the fitted ^ values obtained in Ref. 60. The decay of 

the ^Tl\a part is stronger than the ^Tlyi part due to the larger number of open decay chaimels. If 

a value of w = 270 corresponding to the Stark shift level, is used, after a delay of 3.8 |J5, the 

^Tl\a peak is predicted to disappear completely. It is well-known that the /-mixing due to the 

8tark effect introduces a lengthening of the lifetimes.^ Here I is the orbital angular momentum 

of the Rydberg electron. Assimiing as in Ref 62 that this lengthening is the same for each 

rotational level and each /-complex, a qualitative agreement with the experimental branching 

ratio is obtained by multiplying n a scaling factor of 6 [see Fig. 7(b)]. This corresponds to a 

"dilution" factor of 220, close to the n value, namely to a decay rate in ri^ instead of ri^ as 

expected. The band is dominated by the p contribution because the decay by rotational 

autoionization is not very important For the ^111/2 band, the decay of the p contribution by both 

the spin-orbit and the rotational autoionization is more important than the decay of the / 
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contribution. This is due to the &ct that the decay is proportional to the difference between the 

|j. values of the singlet and triplet states, which is larger for the p states than for the / states. 

Consequently, it is the/contribution which dominates the ^Tlia band. 

The assignments of vibronic transitions involving the stale are given in 

the first half of Table n. The hot band 2i®, identified at 80 888 cm"' in the N2P-PFI-PE 

spectrum, is not covered in the energy range of the present experiment The peak at 81 901.1 

cm"' is 616.3 cm"' above the ^n3/2(Oo°) band and is identified as ^ria/jClo'). This assignment is 

consistent with the previous N2P-PFI-PE and theoretical prediction of 81 899.8 cm"' for the 

^n3/2(lo') band. The 81 242.6 cm"' peak which is 658.5 cm"' below the i') band is thus 

assigned to ^IlsaClo'). The ^n3/2(2o') band is predicted to be a doublet at 81 622.4 and 81 627.4 

cm"', corresponding to the transitions (0,l,0)^Si/2^ (0,0,0) and (0,1,0)^As/2 (0,0,0). The 

N2P-PFI-PE spectrum only reveals one peak at 81 618 cm"'. This peak is resolved into two 

peaks at 81 613.6 and 81 618.1 cm"' in the VUV-PFI-PE spectrum. Although these values are 

lower than the corresponding theoretical predictions by «9 cm"', the observed separation of 5 

cm"' is identical to the theoretical prediction. However, since the (0,l,0)^A5/2 (0,0,0) 

transition is highly forbidden, the peak observed at 81 618.1 cm"' may not be due to this 

transition. The vibronic band at 81 222 cm"' observed in the N2P-PF1-PE spectrum is also 

resolved into a doublet at 81 217.6 and 81 225.7 cm"' in the present experimenL These peaks 

are assigned to the transitions (0,1,0)^11/2"^ (0,1,0) and (0,l,0)^A5/2 (0,1,0), respectively. 

The corresponding positions predicted for these transitions are 81 226.4 and 81 231.4 cm"'. 

Since the S/N ratio for the 2i' band is significantly better than that for the 2o' band, the Rermer-
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Teller splitting for the (0,1,0) state of CS2'̂ ( A!'̂ n3/2) is more reliably determined by the 2i' band 

to have a value of 8 cm'*. The previous N2P-PFI-PE study observed a single peak at 81 950 

cm"' for the 2o^ band. This band is predicted to be a triplet at 81 9683, 81 969.5 and 81 982.3 

cm*'. We have assigned the three peaks at 81 950.9, 81 958.8 and 81 979.8 cm"' resolved in the 

spectrum of Fig. 6 to the transitions (0,2,0)^111/2 (0,0,0), (0,2,0)^07/2 ^ (0,0,0) and 

(0,2,0)^113/2 <— (0,0,0), respectively. The discrepancies between the experimental and 

theoretical values for the (O^jOfUi/z (0,0,0), (0,2,0)^07/2 (0,0,0) and (0,2,0)^113/2 ^ 

(0,0,0) transitions are 17.4, 10.7 and 2.5 cm"', respectively. However, these differences are 

within the theoretical accuracy of 10-20 cm"'. We caution that the association of the peak at 

81 969.5 cm"' to the (0,2,0)^07/2 (0,0,0) transition is subject to future verification because 

this transition is highly forbidden. Taking into account the anharmonicity, the (0,2,0) state of 

the CS2( A!" 'Sg^ groimd state is split into 2 levels: 'Ag at 792 cm"' and 'Zg^ at 802 cm"' above 

the CS2(A''Sg'̂ ; 0,0,0) state. '̂ Thus, the band is predicted to consist of 5 transitions: 

(0,2,0)^ni/2 (0,2,0)'Sg'" at 81 166.3 cm"', (0,2,0)^n,/2 <- (0,2,0)'Ag at 81 176.3 cm"', 

(0,2,0)^07/2 <- (0,2,0)'Ag at 81 177.5 cm"', (0,2,0)^03/2 <- (0,2,0)'Sg^ at 81 180.3 cm"' and 

(0^2,0)^113/2 <- (0,2,0)'Ag at 81 190.3 cm"'. As shown in Fig. 8, the pattern of these predicted 

transition energies seems to lie at a slightly higher energy compared to the position of the 

band. From the analysis of the 2o\ we have obtained the Renner Teller vibronic energies of666, 

674 and 695 cm"' for (0,2,0)^ni/2, (0,2,0)^07/2 and (0,2,0)^113/2, respectively, above CS2'̂ (^n3/2; 

0,0,0). In accordance with these values, the transition energies are predicted as: (0,2,0)^01/2 <— 
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FIG. 8. Compaiison of the observed structures for the band and the predicted 
transition energies. The solid vertical marks are predicted positions based on level energies 
from the analysis of the Renner-Teller structure of the band. The dashed vertical 
marks are energies predicted by theoretical level energies from Ref 38. See the text. Part of 
the observed features should be due to rotational structures. 
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(0,2,0)'Sg'" at 81 148.9 cm*', (0,2,0)^ni/2 -t- (0,2,0)'Ag at 81 158.9 cm-', (0,2,0)^07/2 <-

(0,2,0)'Ag at 81 166.8 cm*', (0,2,0)^03/2 <-(0,2,0)'V at 81 177.8 cm-', and (OXOfUsn <-

(0,2,0)'Ag at 81 187.8 cm*' (see Table II). A better match between this latter set of predicted 

energies and experimental structures for the 2z^ band is observed in Fig. 8. However, the 

experimental peak at 81 185 cm"' seems to be unaccounted for by the predicted positions. We 

note that the nature is not known for the band observed at 81 930.7 cm'' in the VUV-PFI-PE 

spectrum. 

Similar vibronic transitions to the excited €82^^111/2) spin-orbit state are identified as 

given in the second half of Table H. Subtracting the known level position of 396 cm"' for (0,V2 

= 1,0) fi»m the energy (81 725.9 cm"') for the Oo° band, we obtain the energy of 81 329.9 cm'' 

for the hot band transition (0,0,0) •<- (0,1,0). The previous N2P-PFI-PE study identified a band 

at 81 328 cm'' for this transition. Two peaks at 81 322.4 and 81 329.9 cm'' are foimd in the 

spectrum of Fig. 6. We tentatively assign the latter peak to be the ^ni/2(2i°) band. The peak at 

81 322.4 is left unassigned here. The assignments of the 2i' and 2o' vibronic bands are in 

excellent agreement with that of the N2P-PFI-PE study, yielding a Renner-Teller splitting of 

21.4 cm'' for the (0,l,0)^A3/2 and (0,1,0)^21/2* states. Although the theoretical prediction (20 

cm'')^^ for the splitting of the (0,l,0)^A3/2 and (0,l,0)^2i/2' states are in agreement with the 

experimental observation, the absolute transition energy for (0,l,0)^A3/2 <- (0,0,0), (0,1,0)^21/2' 

(0,0,0), (0,1,0)^A3/2 <- (0,1,0) and (0,1,0)^21/2' <— (0,1,0) are higher than the corresponding 

experimental energies by «10 cm*'. The N2P-PFI-PE study identifies the (1,0,0) <— (1,0,0) 

transition at 81 686 cm''. Due to the poor S/N ratios in this energy region, the value of 81 689 
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cm"' obtained here from the VUV-PFI-PE spectrum is a crude estimate. The vibronic 

band is also predicted to have 5 peaks: (0^,0)^05/2 <- (0,2,0)'Ag at 81 593.7 cm"', (0,2,0)^113/2 

<- (0,2,0)'V at 81 629.1 cm"', (OXOfUm <- (0,2,0)'i:g'" at 81 633.6 cm"', (OafifUm <-

(0,2,0)'Ag at 81 639.1 cm"' and (0,2,0)^ni/2 (0^,0)'Ag at 81 643.6 cm"'. These predicted 

transition energies are at the high energy side of the observed structure attributable to the 

^ni/2(22^) band (peak maximum at 81 574.5 cm"') (see Fig. 6). The detailed Renner-Teller 

components for the ^Iliai2:^) band cannot be identified here because of poor S/N ratios. 

Nevertheless, the profiles for the ^ThaC^^) band and ^Uia(22^) band (peak mayimum at 

81 574.5 cm"') appear to be similar. 

The rotational temperature for the CS2 pulsed beam is assumed to be 10 K in this study. 

However, since the rotational constant for CS2 is small, a significant number of rotational states 

are still populated. Observed multiple peak structures may be of vibronic as well as rotational 

origin. Thus the suggested assignments of Reimer-Teller structures are not definitive. 

C. Relative vibronic band intensities observed in the VUV-PFI-PE, N2P-PFI-PE and TPE 

spectra 

The major difference between the N2P- and VUV-PFI-PE spectra is the relative 

intensities for the vibronic bands. Noticeably, the relative intensities for the vibronic bands 

close to the ni/2(Oo°) band in the energy region of 81 550-81 800 cm"' observed in the VUV-

PFI-PE spectrum are significantly lower than those observed in the N2P-PFI-PE spectrum. 

Furthermore, the doublet for the ^ni/2(2o') band resolved in VUV-PFI-PE spectrum is also 

weaker than that found in the N2P-PFI-PE spectrum. We note that the published N2P-PFI-PE 
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spectrum has not been normalized by the laser intensities. Thus, the above comparison may not 

be meaningfiil. It has been shown previously in other N2P-PFI-PE studies that the relative 

intensities for vibronic bands observed in the N2P-PFI-PE spectrum can be different from those 

in the single photon or VUV photoelectron spectrum because of the mediation of a dissociative 

state in the N2P study 

The TPE spectrum for CS2 in the energy region of 10.055-10.260 eV obtained at ALS 

and F = 0.1 V/cm is plotted at the bottom of Fig. 3. The electron energy resolution achieved for 

the TPE spectrum is 3 meV (FWHM). The TPE spectrum obtained here is in excellent 

agreement with that reported previously using a similar energy resolution.^^ Based on the 

detailed assignment of the VUV-PFI-PE spectrum above, we conclude that the first two 

prominent peaks of the TPE spectrum are the A'̂ Ils/aCOo'') and ^ni/2(Oo°) bands, marking 

IE[CS2^(^^n3/2)] and IE[CS2^(^ni/2)]. The other minor peaks marked in the spectrum are 

vibronic bands consisting of Renner-Teller structures due to excitation of 2 and 4 quanta of 

V2^^^ The small peak resolved in the TPE spectrum below the IE[CS2^(^n3/2)] is due to the hot 

band ^113/2(21'). The comparison of the TPE spectrum and the PIE spectrum of Fig. 3(a) 

indicates that the lEs determined by step-like features in PEE measurements and peaks in TPE 

measurements at a low F are in excellent agreement. 

We have also compared the VUV-PFI-PE and TPE spectra in Figs. 9(a) and 9(b), 

respectively. Although the resolution of the TPE spectrum is significantly lower than that 

achieved in the VUV-PFI-PE study, the agreement between the IE[CS2^( A'̂ 113/2,1/2)] values 

determined by the peak positions of the two prominent photoelectron bands resolved in the 
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FIG. 9. Comparison of the (a) VUV-PFI-PE and (b) TPE spectra in the energy region of 81 100-82 100 cm"'. 
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spectra of Figs. 9(a) and 9(b) is ^cellent. This observation indicates that iising the width of a 

photoelectron band to set the experimental uncertainties for the lEs may be too conservative. 

Other weaker vibronic structures observed in the VUV-PFI-PE spectrum are also evident in the 

TPE spectrum. 

Most interestingly, the relative intensities for the vibronic bands observed in the TPE 

and VUV-PFI-PE spectrum are found to be in excellent accord. While the intensities for the 

^n3/2(Oo'') and ^IIi/zCOo'̂  photoelectron bands observed in the Hel photoelectron spectrum of 

CS2 are comparable,^* a ratio of w2 is observed for the intensity of the ^n3/2(Oo°) band to that of 

the ^ni/2(Oo'') band found in the VUV-PFI-PE and TPE spectra. The explanation for the relative 

intensities of the ^03/2(00®) and ^ni/2(Oo®) bands observed in the VUV-PFI-PE spectrum has 

been given above. The high intensity for the ^n3/2(Oo°) band compared to that of the ^Ili/aCOo®) 

band foimd in the TPE spectrum is likely due to contribution by nearby autoioni2dng Rydberg 

levels. 

We have examined the widths of the X ^n3/2(Oo'') and ~ni/2(Oo°) bands under different 

experimental conditions. The width [>4.7 cm*' (FWHM)] for the X ^03/2(00'̂  band is found to 

be greater than that [^.5 cm"' (FWHM)] of the ^ni/2(Oo°) band. We note that the strong 

Rydberg state is only about 10 cm*' lower than the position of X ^n3/2(Oo°), whereas no 

strong autoionizing features are found in the vicinity of the position of ^ni/2(Oo°). It is possible 

that the Stark field induced ionization of the state contributes to the observed width of 

the X ^n3/2(Oo°) band. Figure 10 compares a scan of the X ^Tha(S (̂̂  band observed at F == 0.6 

V/cm and a portion of the PIE spectrum shown in Fig. 2(a). The minor features marked by 
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FIG. 10. Comparison of (a) the ^n3/2(Oo°) band and (b) the PEE spectrum for CS2 in the energy 
region of 81 710-81 740 cm"' obtained using the VUV laser. TTie PIE spectrum and PFI-PE 
band are obtained at F = 23 V/cm and a pulsed field of 0.6 V/cm, respectively. The structure 
marked by arrow in the band coincides with the position of 1 lnp<Su. 
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The arrow in the ^UsniOo^ band is found to coincide with the position of the 17nptJu 

autoionizing state. The strength of this feature is most likely derived fi:om initial excitation 

to the I7rqfai, Rydberg state, hi the recent mass analyzed threshold ion (MAT!) study of Ne,'° 

the MATI peak for the Ne^C^Ps/j) state is also found to be affected by the nearby Rydberg state 

13j'. The latter Rydberg state is wl8 cm"' below IE[Ne^(^P3/2)]-'° 

IV. CONCXUSION 

We have performed a high resolution VUV photoionization, VUV-PFI-PE, TPE and 

Stark field ionization studies of CS2 near the ^113/2,1/2) thresholds. The VUV-PFI-PE 

spectrum has allowed the identification of more detailed Renner-Teller structures. An 

interesting observation is that the Franck-Condon factors for vibronic bands resolved in the 

VUV-PFI-PE and TPE spectra are in excellent agreement A theoretical simulation of the 

^113/2(00°) and ^ni/2(Oo°) VUV-PFI-PE band profiles reproduces the observed branching ratio of 

two for CS2^(^n3/2)/CS2^(^ni/2). Evidence is also found that the optically allowed autoionizing 

Rydberg state (17/7o-„), which is «10 cm'' below IE[CS2'̂ (A'̂ n3/2), contributes to the PFI-PE 

^n3/2(Oo°) band structure. The analysis of the PIE spectra reveals three Rydberg series with the 

configurations ^Tlini\np<yu-, ^Tl\n\np7iu and ^H\n\nfu converging to the excited €82^(^111/2) 

spin-orbit state. The Stark field study shows that it is important to correct for the Stark shift in 

IE measurements using the PIMS method. 

Table HI summaries the IE[CS2^(.X'̂ 113/2,1/2)], vi^ v-i and A values determined in the 

present experiment and the previous N2P-PFI-PE study. As shown in the table, the EE values 
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Table HI. Compaiison of Spectroscopic constant for and CSa^C X ^Tly2,\n)̂  

Method State IE(cm*') vi'̂ Ccm"')'" V2^(cm"*)'' ^(cm*') 
N2P-Pn-PE'' '03/2 81 286 ±5 614 332 

'n,y2 81 726 ±5 624" 320'(^A3/2) 
342®(^D 

-440 

VUV-Pn-PE 'n3/2 81 284.8 ±4.7 616 330(^2^ 
336(^A3/2) 

^n,/2 81 725.9 ±3.5 ... 321(^A3/2) 
342(^1-) 

-441 

Rydberg series 
Series I ^n,/2 81 727.1 ±0.5 
Series n ^n,/2 81 726.3 ± 1.0 

Stark Shift ^n3/2 81 287 ±5^ 
81 285 ±78 

'All values except those of the N2P-PFI-PE study are obtained in the present experiment 
^Energies for the vibronic levels corresponding to excitation of one quantum of vi^ or v-i-
Energies are measured with respect to that of CS-^i X 0,0,0) or €82^(^111/2; 0,0,0). 

®Table 1 of Reference 30. 
''Table 2 of Reference 30. 
^Values of 341 and 391 cm"' are given in Table 2 of Ref. 30. 
VUV laser experiment 
^Synchrotron study. 
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detennined by the N2P-PFI-PE, VUV-PFI-PE, Rydbeig series analysis and Staric field 

extrapolation methodss^ieeto within ±l cm'', indicating that the IE[CS2^(A!^ ^113/2.172)] values 

determined here and in the previous N2P-PFI-PE experiment ate highly acciirate. Taking the 

average of these independent determinations, we recommend a value of 81 285.7 ± 2.8 cm*' for 

IE[CS2^(A'̂ n3/2)]. For IE[CS2^(^ni/2)], we prefer the value of 81 727.1 ± 0.5 cm*' determined 

by the Rydberg series analysis. The vi^, V2'̂  and A values derived ftom the VUV and N2P 

studies are also in excellent agreement 
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Note added in proof. The 81274 cm*' peak of the PFI-PE spectrum [Fig. 10(a)] appears 

to be mote satisfectorily assigned as [(0,l,0)^Liy2ll8ptT<- (0,l,0)'n„* (see C. Cossart-Magos, 

Philo. Roy. Soc. Series A, 355, to be published in Jime 1997). 
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CHAPTER 5. VACUUM ULTRAVIOLET LASER PULSED FIELD 
IONIZATION PHOTOELECTRON STUDIES OF POLYATOMIC 

SPECIES: ACCURATE IONIZATION ENERGIES OF CH3SH AND 
CEIsCHjSH 

A paper published in the Joximal of Chemical Physics 

Y.-S. Cheui^, J.-C. Huang and C. Y. Ng 

ABSTRACT 

The vacuum ultraviolet (VUV) pulsed field ionization photoelectron (PFI-PE) spectra 

for CH3SH and CH3CH2SH have been obtained near their ionization thresholds. Using a semi-

empirical simulation scheme, we have obtained satisfactory fits to fine structures resolved in the 

VUV-PFI-PE spectra, yielding accurate ionization energies of 76 256.3 ± 2.9 cm'' (9.45458 ± 

0.00036 eV) and 74 948.7 ± 2.9 cm"' (9.29246 ± 0.00036 eV) for CH3SH and CH3CH2SH, 

respectively. 

1. INTRODUCTION 

Accurate ionization energies (lEs) for molecular species are of fimdamental importance 

to chemists,' which are used for prediction of chemical reactivity, such as in electron transfer 

reactions. The combination of the IE and heat of formation at 0 K (AyH°o) of a neutral molecule 

yields the value for the corresponding cation. Thus, accurate experimental IE 

determination is valuable to ion chemistry in general. A great number of IE values for 

molecules in the literature has been measured by single-photon vacuum ultraviolet (VUV) 

photoionization mass spectrometry^ and photoelectron spectroscopy''̂  using 

monochromatized laboratory discharge lamps and synchrotron radiation as the light sources. 
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Due to the limitation in the photon energy resolution for these monochromatized light sources, 

the uncertainties for IE values measured are in the range of0.003-0.10 eV.^*^ As a result of the 

hot band and kinetic shift effects, the accurate IE determination for polyatomic molecules is 

specially challenging.^ The ^jplication of molecular beam techniques has shown to reduce the 

hot band effect and thus improve the actual experimental resolution.^ In the theoretical fix)nt, IE 

values of small and medium size molecules and radicals consist of some main group elements 

can now be predicted by high level ab initio calculations^ to an accuracy of <0.15 eV, 

comparable to experimental uncertainties.^ This theoretical achievement challenges 

experimentalists to make IE measurements with higher accuracy. 

In the past decade, significant advances have also been made in experimental techniques 

for accurate IE measurements.'®'" Due to the development of modem vacuum ultraviolet 

(VUV) light sources, such as tunable VUV lasers'̂ '̂  and third generation synchrotron 

radiations,'"* together with new experimental schemes,'"*'' ''* '̂  IE values for many polyatomic 

species have been reported to uncertainties of 1-8 cm''.'° '̂  The uncertainties for the IE values 

of a few polyatomic species are lower than 1 cm"'.'̂  One of the most general and accurate 

techniques for IE measurements is VUV pulsed field ionization photoelectron (PFI-PE) 

spectroscopy.'̂  When a rotationally resolved PFI-PE spectrum of a molecule is obtained, the 

analysis of the spectrum co\ild lead to a definitive IE value. The obtainable resolution for 

VUV-PFI-PE spectroscopy is limited by both the resolution of the VUV laser and the nature of 

the pulsed electric field.The common resolutions achieved in PFI-PE measurements are in 

the range of 1-3 cm"'.'°*'̂  Since the rotational constants for polyatomic species are usually 10 

fold smaller than this resolution range, the PFI-PE spectrum for a polyatomic molecule is not 
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expected to be folly rotational-resolved. A typical PFI-PE vibrational band for a polyatomic 

molecule exhibits a FWHM of 10-20 cm*'."'" Nevertheless, fine structures should still be 

observable in PFI-PE vibrational bands measured at a resolution of 1-3 cm"'.'® These fine 

structures are resulted firom the overly of many unresolved rotational transitions. An 

^)propriate simulation of the spectra would provide information about the IE to an acciiracy 

close to the instrumental PFI-PE resolution (1-3 cm"') instead of an uncertain^ set by the 

FWHM (10-20 cm"') of the PFI-PE vibrational band. A successfiil simulation of the PFI-PE 

bands for nascent CH3S radicals formed in the photodissociation of CH3SH and CH3SSCH3 has 

been made previously.'® Despite that the CH3S radicals are rovibronically excited, we have 

obtained an IE value for CH3S to an accuracy of 8 cm"'.'® 

If the molecular species of interest is cooled by pulsed supersonic expansion prior to the 

PFI-PE measurement, the contours of rotational bands are expected to be sharper and thus 

providing more detailed features for spectral simulation. Theoretical models for accurate 

predictions of transition line strengths in rotationally-resolved photoelectron studies of 

polyatomic species are not available. Chir goal is to employ a semi-empirical scheme for 

simulating contours of rotational branches resolved in high resolution photoelectron spectra of 

cold polyatomic molecules. As demonstrated below, we have obtained more accurate IE values 

for CH3SH and CH3CH2SH by the simulation of fine structures resolved in the first (or 0-0) 

vibrational VUV-PFI-PE bands of these molecules. In the previous non-resonance two-photon 

PFI-PE (N2P-PFI-PE) studies of CH3SH and CH3CH2SH, the values for IE of these molecules 

were determined to the uncertainties of ±5 cm"'.'̂  The latter results are based on the 

assumption that the peak positions observed in the 0-0 vibrational N2P-PFI-PE bands 
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correspond to the true adiabatic IE values for CH3SH and CH3CH2SH. Since rotational fine 

structures were not observed in the N2P-PFI-PE study, we were not able to perform a 

simulation to support this assumption. We find that the resolution achieved in VUV-PFI-PE 

measurements'® is generally higher than those'̂ -^" observed in N2P-PFI-PE smdies. The fact 

that the ultraviolet laser beam has to be focused at the target molecules in N2P-PFI-PE studies 

is expected to promote multi-photon ionization and dissociation processes. The saturation effect 

and higher electron background generated from these multi-photon processes might degrade the 

obtainable resolutioiL 

n. EXPERIMENT 

The experimental apparatus and procedures used are similar to those described 

previously." The ^paratus consists of a tunable VUV laser source, a pulsed molecular beam 

source, an ion time-of-£light (TOF) mass spectrometer and an electron detector for PFI-PE 

detection. 

The VUV laser system is comprised of one excimer laser (Lambda Physik EMG201), 

two dye lasers (Lambda Physik FL3002) and a Kr gas cell. The XeCl (308 nm) output (200-

250 mJ) of the excimer laser was split to pump the two dye lasers. The output fi«quencies coi 

and C02 of the dye lasers were mixed in a iCr gas cell. In this experiment, the VUV fi^equencies 

used correspond to the difference fijequencies 2g)i - 0)2. One dye laser is fixed at the ultraviolet 

fi«quency coi = 47 046.87 cm"', which matches the two-photon resonance of the Kr 4/7 —• 5p 

transition. The other dye laser is tuned in the visible firequency (C02) range of 18 519-20 000 

cm*'. The visible laser beam is merged with the ultraviolet laser beam by a dichromic mirror. 
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Both beams were then focused into the Kr cell (pressure = 30 Toir) by a focusing lens (focal 

length =15 cm). The gas cell has a quartz entrance window and a MgFa exit windows, which 

serves to isolate the gas cell from the photoexcitatioo/photoionization (PEX/Pl) chamber. With 

a transmission cut-off wavelength of «115 nm, the MgF2 window allows the VUV different 

frequency to transmit while absorbing the VUV simi freqxiency. 

A photoelectric detector made out of Cu was used to measure the VUV laser photon 

intensities. In addition to monitoring the VUV light intensities, the photoelectric detector also 

served as a light trap for ©i, ©2 and VUV radiations. However, by blocking the visible laser 

beam, we found that ss90% of photoelectric current is contributed by the ultraviolet laser beam. 

Fortunately, this background is constant because the UV frequency is fixed. We find that the 

intensity of the VUV difference frequency is also nearly constant over the VUV range of 

wlOOO cm"' in this study. Thus, the PFI-PE data presented here have not been normalization by 

the VUV intensities. 

To calibrate the laser fi^uencies, a small fraction of the dye laser (C02) output was 

directed into a uranium hollow cathode tube with Ne as the buffer gas. The Ne absorption 

spectrum recorded simultaneously during the experiment provided accurate calibration of the 

PH-PE spectra. The bandwidths of the dye lasers are 0.2 cm"' for the fimdamental and 

»0.4 cm"' for the second harmonic outputs. For a two-photon excitation, the resolution is iSiO.8 

cm"'. Thus, the resolution for the VUV laser radiation generated by difference firequency 

mixing is estimated to be <1 cm"'. The accuracy of photon frequencies given here is expected 

to be ±0.2 cm"'. 
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The samples (CH3SH or CH3CH2SH) are introduced into the vacuum chamber by a 

pulsed valve operated at 10 Hz with a 300-^s open time. A typical gas mixture used is 20% of 

the sample buffered by He or Ar at a total pressure of wl290 Torr. The molecular beam is 

skimmed by a conical skimmer (1-mm diameter, 3.8 cm fix)m the nozzle) before intersecting 

with a tunable VUV laser beam (90°, 8.3 cm downstream fiom the skimmer). The moleciilar 

beam source chamber was pumped by a fireon-trapped, 6-in. diffiision pump (pumping speed » 

2,000 Us), ^«^e the photoionizatioQ chamber and the ion-TOF tube were evacuated by 

turbomolecular pumps with pumping speeds of 250 and 50 L/s, respectively. During the 

experiment, the beam source chamber and the photoionization chamber were maintained at 

pressures of «5 x 10*^ and »5 x 10*^ Torr, respectively. 

Electrons and ions formed at the PE/PI region are extracted at opposite directions and 

orthogonal to both VUV and molecular beams. One set of channel plates is installed at the end 

of the ion TOF drift tube to detect ions and the other set of channel plates is located right below 

the PEX/PI region to detect elections. The signals ftom the electron detector (or ion detector) 

and the photoelectric VUV detector were fed into two identical boxcar integrators (Stanford 

Research SR250), which were interfaced to an IBM/PC computer. The electron (or ion) and 

VUV laser signals were averaged for 30 laser shots at each VUV ft^quency. The spectra shown 

here represent the averages of 4-5 independent scans obtained at the same experimental 

conditions. 

The firing sequence of the pulsed valve, dye laser and pulsed electric field is controlled 

by two digital delay units (Stanford Research DG535). In this experiment, the firing of the 

VUV excitation laser was delayed by 520 fis with respect to the triggering pulse for opening the 
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pulsed valve. After a ^ical delay of 2.5 with respect to the firing of the VUV laser, a 

pulsed (duration = 1 us) electric field of aO.9 V/cm was used to field-ionize the high-« Rydberg 

species as well as to extract the electrons to the microchaonel plate detector. 

m. RESULTS AND DISCUSSION 

We have obtained the VUV-PFI-PE spectra for CH3SH and CH3CH2SH in the photon 

energy ranges of 76 100-77 000 and 74 600-75 800 cm"', respectively. The VUV-PFI-PE 

spectrum for CH3SH in the region of 76 210-76 310 cm"' is shown in Fig. 1(a), while that for 

CH3CH2SH in the region of 74 922-74 985 cm"' is depicted in Fig. 2(a). Since the other 

portions of the VUV-PFI-PE spectra for CH3SH and CH3CH2SH are essentially identical to 

those reported in the N2P-PFI-PE study,they are not shown here. The VUV photoionization 

efficiency spectra for CH3SH and CH3CH2SH (not shown here) have also been recorded. These 

spectra are also in agreement with those observed in previous N2P'̂  and VUV photoionization 

efficiency studies. '̂ We note that due to multi-photon ionization and dissociation processes, the 

photoionization efficiency spectrum for CH3CH2SH could not observed in the previous N2P-

PEE study.'' 

We have compared in Table I the peak positions of vibrational bands observed in the 

VUV-PFI-PE and N2P-PFI-PE'' spectra for CH3CH2SH. These positions are measured with 

respect to the peak position of the 0-0 vibrational PFI-PE band for CH3CH2SH. The previous 

ab initio calculations show that CH3CH2SH and CH3CH2SH  ̂may exit as the trans- or gauche' 

conformer." For both CH3CH2SH and CHsCHiSlf", the gawcAe-conformer is predicted to be 

slightly more stable than the /rons-conformer. The theoretical predictions for the relevant 
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FIG. 1. (a) VUV-PFI-PE spectrum of CH3SH in the photon energy range of 76 210-76 310 
cm*', (b) Simulated spectrum for CH3SH (solid line) obtained by using a rotational temperature 
of 20 K and a Gaussian width of 2 cm"' (FWHM). The contributions by various rotational 
branches are marked: (dashed curve) (A1 = 0; AK = 0, ±1), (dash-dotted curve) (AJ = ±1; AK = 
0, ±1) and (dotted curve) [(AJ = 0, ±1; AK = ±2) plus (AJ = ±2; AK = 0, ±1, ±2)]. 
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FIG. 2. (a) VUV-PFI-PE spectrum of CH3CH2SH in the photon energy range of 74 927-
74 973 cm"', (b) Simulated spectrum for CH3CH2SH (solid ihie) obtained by using a rotational 
temperature of 15 K and Gaussian width of 1 cm*' (FWHM). The contributions by various 
rotational branches are marked: (dashed curve) (AJ = 0; AK = 0, ±1), (dash-dotted curve) (AJ = 
±1; AK = 0, ±1) and (dotted curve) [(AJ = 0, ±1; AK = ±2) plus (AT = ±2; AK = 0, ±1, ±2)]. 
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Table I. Comparison of scperimental and theoretical vibrational frequencies for 
CHsCHaSlT. 

Assignment' Theoretical 
(cm*')" 

N2P-Pn-PE 
(cm"')» 

VUV-Pn-PE 
(cm*')" 

vi ez ei"^ -129 -149 
vi"^ ei -> e2'*' 93 116 119 

Oi ->02^ 169 144 145 
V3 289 288 292 
V4 615 628 623 

"Reference 17. 
''This work. 

vibrational frequencies of CH3CH2SH and CHsCHiSlT, are also included in Table Taking 

into accoimt the experimental imcertainties, the vibrational quanta for and V4^ observed in 

this VUV study and the N2P-PFT-PE experiment are in good agreement The positions of the 

doublet observed in the N2P-PFI-PE experiment'̂  at 116 and 144 cm"' are also confirmed at 

119 and 145 cm"' in the VUV-PFI-PE spectrum for CH3CH2SH. This doublet has been 

attributed to the transitions from the vibrational states ei and oi of the torsional potential for 

CH3CH2SH to the respective vibrational states 62^ and 02^ of the torsional potential for 

CH3CH2SHr. The VUV-PFI-PE spectrum reveals a band at -149 cm"', which is assigned to the 

e2 -> ei^ hot band transition. The latter transition is predicted to be at -129 cm"' by the 

theoretical calculations." 

The assignment'̂  of the vibrational structures for the CHsSH/CHsSH^ and 

CH3CH2SH/CH3CH2SH systems is based on the assumption that the peak positions of the 0-0 

PFI-PE vibrational bands of CH3SH^ and gcmche-^YiiCYii^YC correspond to the adiabatic lEs 

of CH3SH and gfluc/ie-CH3CH2SH, respectively. A careful examination of the 0-0 PFI-PE 



www.manaraa.com

120 

bands for CH3SH [Fig. 1(a)] and CH3CH2SH [Fig. 2(a)] reveals fine structures, which are not 

observed in the N2P-PFI-PE study.As indicated above, the main purpose of this article 

concems the simulation of these fine structures observed in the 0-0 VUV-PFI-PE bands for 

CH3SH and CH3CH2SH. The geometries of most polyatomic molecules and radicals are low 

symmetry species, as in the case of CH3SH and CH3CH2SH. Thus, the semi-empirical scheme 

used and rationalization presented here should be generally applicable for simulating the 

photoelectron or PFI-PE spectra of other polyatomic species obtained with a similar energy 

resolxrtion. 

In order to perform the simulation, we need the rotational constants for the neutrals and 

their cations in their ground states. The rotational constants for the neutrals (A", B", C"), 

CH3SH and CH3CH2SH and the cations (A"", B", O, CHsSlT and CHsCHiSlT, obtained by 

ab initio calculations at the restricted Hartree-Fock level with the 6-3 lG(d) basis set are listed in 

Table II. These calculations were made using the Gaussian 94 package program.^ The 

calculations indicate that the neutral CH3SH (CH3CH2SH) and cation CHsSlT (CH3CH2SH^ 

have similar geometries as shown by the rotational constants in the table. The asymmetry 

parameters (k) [defined as (2B" - A" - C")/(A" - C") for the neutrals and (2B^ - A"*" - ^/(A^ -

O for the ions] are -0.99 for CH3SH and CH3Sir and -0.96 for CH3CH2SH/CH3CH2Sir. 

Hence, the four species are all asymmetric top molecules. Here, the rotational energies (Erot) of 

these asymmetric top molecules are obtained by diagonalization of the Hamiltonian matrix 

using the symmetric top rotational basis seL  ̂ Since the k values are very close to -1, CH3SH 

(CH3CH2SH) and CH3SH^ (CH3CH2SH^ are near prolate top molecules. Thus, it is reasonable 
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Table n. Calculated rotadoiial constants (A", B", C") for CH3SH and CH3CH2SH, and (A^, 
B\ C*) for CHsSIT and CHsCHaSlT. 

Molecule or ion A" or A"^ (cm"') B"orB'̂ (cm-') C" or C* (cm"') 
CH3SH 3.50 0.43 0.41 
CH3CH2SH 0.965 0.177 0.162 
CHaSlT 3.46 0.46 0.44 
CH3CH2Sir 0.937 0.182 0.166 

to assume that Ka" (Ka^ is a good quantum number for the neutral (ion) species. Here, we 

represent Ka" (Ka^ as K" (K^. 

Under this assumption, the rotational eigenstates for CH3SH (CH3CH2SH) and CH3Sir 

(CH3CH2SH^ can be characterized as | J", K"> and as | J*", K^, where J" and are the total 

angular momentum quantum numbers for the neutral and ion species, respectively. In the case 

of PFI-PE measurements, the final state | J', K'> consists of an ion core and a high-n (« > 100) 

Rydberg electron. Considering that the Rydberg electron are only weakly bound to the ion core, 

the final state waveflmction (excluding electron spins) to a first approximation can be described 

by the product of the rotational state | for the ion core and the Rydberg state | n, ,̂ mi) 

for the electron, 

lJ',K'> = ir,K">ln,£,m,>, (1) 

where 

J '=S'+i  (2) 

and 

K' = K'' + m/. (3) 

The dipole transition selection rules firam | J", K") to | J', K') for the parallel bands are 
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Arn = 0,±l and AKn = 0 forK'';fcOaiid (4a) 

AJ„ = ±1 and ABCn = 0 for K" = 0. (4b) 

For perpendicular bands, we have 

AJn = 0, ±1 andAKn = ±l, (5) 

where AJn = J' - J" and AKn = K' - K". The selection rules can be expressed in terms of AJ = 

J" and AK = K' - K". Using Eqs. (2)-(4), we obtain the selection rules for ^ = 0 as given by 

Eqs. (6a) and (6b) for parallel bands, and by Eq. (7) for perpendicular bands. 

AJ = 0, ±1 and AK = 0 for K" ^ 0 and (6a) 

AJ = ±1 and AK = 0 for K" = 0. (6b) 

AJ = 0, ±1 andAK = ±l. (7) 

For ^=1, the selection rules for parallel and perpendicular bands are given in Eqs.(8) and (9), 

respectively. 

AJ = 0,±l,±2andAK = 0,±l (8) 

AJ = 0,±l,±2andAK = 0,±l,±2. (9) 

We use the conventional labeling 0, P, Q, R and S branches for AJ = J^- J" = -2, -1,0,1 and 2, 

respectively. Similarly, the consideration of £ ^ for the electron would allow contributions 

from I AJ I > 3 and I AK | > 3 transitions. We note that for molecular species of low symmetry, 

such as CHsSH/CHsSlT" and CH3CH2SH/CH3CH2Sir, J^ and J" are identical to the rotational 

quantum numbers hT for the cation and N" for the neutral, respectively, without consideration 

of the electron spin and orbital angular momenta. For threshold photoelectron (TPE) 

measurements, a first order wavefunction for the final state | J', K') can be considered as the 
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product of the cation wavefunction | K*) and the outgoing election wavefiinction 11, m/). 

The couplings of the and I and fC^ and m/ follow Eqs. (2) and (3), respectively, which result 

in the same selection rules for PFI-PE measurements involving a high-n Rydberg electron with 

the same I value. The formation of an outgoing electron in a final angular momentum state 

t fix)m an f " state associated with the electronic ground state of the molecule can be considered 

in part the result of an angular momentum exchange arising from interaction (or scattering) of 

the ion core and the photoexcited electron involved. Knowing the rotational distribution of the 

ion core from experimental measurements, we can deduce the distribution of angular 

momentum states £'s of the outgoing electron by the conservation of angular momentum. The 

formation of an electron in a high-f continuum state is not favorable in a threshold 

photoionization process. At the photoionization threshold, the high centrifugal barrier for an 

electron in a high-^ state prevents it from escaping into the ionization continuimi. '̂̂  Hence, the 

probability is also small for a large change in rotational quantum number of the ion core upon 

photoionization. 

The physical interpretation of the selection rules for the TPE or high-« Rydberg electron 

formation is that the electron can exchange a finite angular momentum with the ion core during 

the photoexcitation or photoionization process. This interaction in effect relaxes of the optical 

selection rules for bound-boimd rovibronic transitions, allowing finite probabilities for | AJI >1 

and IAK | >1 transitions. However, these higher I AJ I and | AKI transitions are expected be 

less probable than those for IAII <1 and I AK | < 1. Experimentally, AJ up to ±4 has been 

invoked to fit the N2P-PFI-PE spectrum for CHaS.'̂  
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Similar to the fitting procedure used previously, the intensity for a rotational transition 

fix>m a (J", K") level [Ipe(J", K")] within a given rotational branch is assumed to be proportional 

to the rotational population of the neutral molecrile according to Eq. (10). 

Ipe(J", K") oc rb(2J'' + l)exp[-AE«''/kT«] (10) 

Here, Trot is the rotational temperature of CH3SH (CH3CH2SH), AEmt" is the rotational energy 

measured with respect to the ground rovibronic state of CH3SH (CH3CH2SH), and re is a 

scaling parameter for a given rotational branch, which is adjusted to obtain the best fit to the 

experimental spectrum. The transition probabilities fiom different | J", K") levels within each 

rotational branches are assumed to be equal. 

Figure 1(b) shows the simulated spectrum for CH3SH obtained using a Tna value of 

20 K and a Gaussian linewidth of 2 cm"' (FWHM). The simulated spectrum for CH3CH2SH 

plotted in Fig, 2(b) is obtained using a Tmt value of 15 K and a Gaussian linewidth of 1 cm'' 

(FWHM). In Figs. 1(b) and 2(b), we also show the contributions by various rotational 

branches; (AJ = 0; AK = 0, ±1) (dashed curve), (AJ = ±1; AK = 0, ±1) (dash-dotted curve) and 

[(AJ = 0, ±1; AK = ±2) plus (AJ = ±2; AK = 0, ±1, ±2)] (dotted curve). In both CH3SH and 

CH3CH2SH, the sharp spike at the center of the 0-0 PFI-PE vibrational band is identified as the 

AJ = 0 and AK = 0 branch. The AJ = -1 (P) and AJ = +1 (R) branches contribute to the broader 

structures to the left and right of the center peak, respectively. The contributions from the AJ = 

±2 and AK = ±2 branches have the effect of further broadening the vibrational band and 

provides a more satisfactory fit to the experimental spectrum. Since adding contributions from 

higher AJ rotational branches yields little improvement to the fits, we conclude that the 
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rotational branches corresponding to|Aj| >3 transitions are not important in the 

photoionization of CH3SH and CH3CH2SR 

The identification of coitral peak to be the ^ = 0 and AK = 0 rotational branch of the 

0-0 PFI-PE vibrational bands for CH3SH^ (CH3CH2Sir) allows a more accurate determination 

of the IE for CH3SH (CH3CH2SH). Since the FWHM's of the central peaks associated with the 

AJ = 0 and AK = 0 branches ate 2.9 cm"', we have assigned uncertainties of ±2.9 cm*' for the IE 

values. The IBs for CH3SH (76256.3±2.9 cm*') and gauche-CWZHiSU (74948.7±2.9 cm*') 

determined here are in agreement with results |TE(CH3SH) = 76 262 ± 5 cm"' and 

IE(CH3CH2SH) = 74 951 ± 5 cm*'] of the N2P-PFI-PE study,'̂  M^ch assumes that the peak 

positions of the 0-0 vibrational bands is close to the EEs of CH3SH and CH3CH2SH. We note 

that the latter assumption is not always valid, e.g., the 0-0 PFI-PE vibrational bands for 

CH3SCH3 consists of a split peak.^ Thus, a simulation as described above is essential to obtain 

a more accurate EE value when the resolution used is insufficient to fully resolve rotational 

structures in the PFI-PE or TPE spectrum of a polyatomic molecule or radical. 

In an accurate theoretical treatment, the actual individual rotational line strengths 

depend on the electronic matrix elements that couple the initial neutral states to the cation plus 

photoelectron states. The angular momentum i carried away by the photoelectron must be 

balanced by the rotational angular momentum change of the ion core. In this respect, 

photoionization can be viewed as a scattering process. The semi-empirical treatment described 

here is consistent with the angular momentum balance requirement between the photoelectron 

and the ion core. The main assumption of the semi-empirical scheme is that the line strengths 
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for rotational transitions of a given rotational branch are identical and are measured by the 

scaling parameter rg. We note that the semi-empirical fits to the experimental spectra obtained 

here may not be unique. 

IV. CONCLUSION 

Fine structures due to rotational branch contours are observed in the 0-0 vibrational 

VUV-PFI-PE bands for CHsSH^ and CH3CH2SH^. The semi-empirical simulation of these 0-0 

vibrational bands has yielded more accurate EE of 76 256.3 ± 2.9 and 74 948.7 ± 2.9 cm"' for 

CH3SH and CH3CH2SH, respectively. Furthermore, the simulation shows that contributions 

from rotational branches corresponding to IAJI > 3 are not important in the photoionization of 

CHsSHandCHsCHaSH. 
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CHAPTER 6. VACUUM ULTRAVIOLET SINGLE PHOTON AND 
ULTRAVIOLET NON-RESONANT TWO-PHOTON PULSED FIELD 

IONIZATION PHOTOELECTRON STUDY OF CH3SCH3 

A paper accepted for publicatioa in the International Journal of Mass Spectrometry 

Y.-S. Cheimg and C. Y. Ng 

Abstract 

The vacuum ultraviolet (VUV) single-photon and ultraviolet non-resonant two-photon 

(N2P) pulsed field ionization photoelectron (PFI-PE) spectra for CH3SCH3 have been obtained 

in the energy range of 69 500-72 500 cm"'. Vibrational structures observed in the VUV-PFI-PE 

and N2P-PFI-PE spectra are similar. Guided by the ab initio theoretical harmonic frequencies, 

we have assigned the vibrational bands resolved in these spectra. Using a semi-empirical 

simulation scheme, together with ab initio theoretical rotational constants for CH3SCH3 and 

CH3SCH3'̂ , we have also obtained a good fit to the contours of rotational branches resolved in 

the origin band of the VUV-PFI-PE spectrum. Taking into account the uncertainty of the 

simulation model used, we obtain a value of 70 097.3 ± 2.0 cm"' (8.69096 ± 0.00016 eV) for 

the adiabatic ionization energy of CH3SCH3. 

1. Introduction 

Accurate ionization energies (lE's) for molecular species, which are used for prediction 

of chemical reactivity, are of flmdamental importance to chemists [1,2]. The IE of a gaseous 

molecule can be determined routinely in a photoionization [2] or a photoelectron [3,4] 

experiment Ionization energy determinations made in conventional photoionization and 
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photoelectron studies have uncertainties in the range of 3-100 meV (25-250 cm"'). The 

accuracy of adiabatic IE values measured for polyatomic molecules is especially poor because 

of the difficulty in assessing the hot band and kinetic shift effects [2]. The fact that the 

geometries for a neutral polyatomic molecule and its cation are usually different often makes 

photoionization yields very low near the ionization threshold. The combination of these effects 

may prevent the observation of the ionization step in the photoionization efficiency (PIE) 

spectrum of a polyatomic molecule, and thus results in a large uncertainty in the experimental 

IE value [5]. Recent advances in ab initio quantum computation procedures [6,7], such as the 

GAUSSIAN-2 (G2) type theories [6] and density flmctional [8] theoretical methods, have shown 

to provide IE predictions for small polyatomic molecules and radicals of main group elements 

to an accuracy of <0.15 eV, approaching that achievable in conventional photoionization and 

photoelectron experiments. This theoretical achievement has set a challenge for experimental 

IE measurements to be made with higher accuracy. 

In the past decade, the most exciting development in the field of photoionization and 

photoelectron spectroscopy has been the availability of high resolution, tunable ultraviolet (UV) 

and vacuum ultraviolet (VUV) laser sources [9-11]. For probing electronic structures of 

cations, photoelectron spectroscopic measurements are preferred over PIE studies. The laser 

pulsed field ionization photoelectron (PFI-PE) scheme is the current state-of-the-art 

photoelectron spectroscopic technique and is capable of providing photoelectron energy 

resolution close to the optical resolution [12-14]. For specific molecular species with IE values 

below 12 eV, the non-resonant two-photon (N2P) PFI-PE scheme involving the use of a UV 

laser is an attractive method for high resolution photoelectron measurements [15,16]. Without 
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doubt, the single-photon PFI-PE technique is the most versatile high-resolution photoelectron 

spectroscopic method. In the current technical level, VUV laser radiation with usable 

intensities can be generated at energies iq) to »17.7 eV by nonlinear optical mixing using 

commercial dye lasers [9]. Most recently, a synchrotron based VUV-PFI-PE technique has also 

been demonstrated using monochromatized third-generation undulator synchrotron radiation at 

the photon energy range of 8-27 eV.'̂ '̂ * The PFI-PE resolutions achieved in synchrotron, UV 

laser and VUV laser based measurements are similar. For specific diatomics, triatomics and 

simple hydrides, N2P-PFI-PE and VUV-PFI-PE measurements have provided IE values with 

uncertainties less than a few cm"' [12,19]. This accuracy represents a 10 to 100 fold 

improvement over those achieved in conventional photoionization and photoelectron 

measurements. In principle, the analysis of a truly rotational resolved photoelectron spectrum 

of a molecule is expected to yield the definitive IE value. 

Despite of this impressive experimental progress in high-resolution photoelectron 

spectroscopy, the photoelectron energy resoliitions [>0.2 cm"'. Ml-width at half maximum 

(FWHM)] obtainable in laser or synchrotron based PFI-PE measurements are still not sufGcient 

to resolve rotational transitions in photoelectron spectra of polyatomic molecules. Thus, PFI-

PE studies of polyatomic species reported today mostly provide vibrational information for the 

corresponding cations [12]. In recent VUV-PFI-PE and N2P-PFI-PE studies of CH3SH and 

CH3CH2SH, we find that the full-width-at-half-maximum (FWHM) for individual vibrational 

bands are in the range of 15-25 cm"' for supersonically cooled CH3SH and CH3CH2SH samples 

at rotational temperatures of20-30 K [20,21]. These experiments also show that the resolution 

achieved in the VUV-PFI-PE measurement is better than that in the N2P-PFI-PE study 
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peifonned under similar experimental conditions [21]. Fine structures arising from contours of 

rotational branches are resolved in the origin bands of the VUV-PFI-PE spectra for CH3SH and 

CH3CH2SH. The simulation of these fine structures has provided accurate IE values for CH3SH 

and CH3CH2SH with uncertainties of ±2.9 cm"' [21]. 

Here, we present the results of an N2P-PFI-PE and VUV-PFI-PE study of CH3SCH3. 

As in previous studies [20,21], ab initio predictions for vibrational and rotational constants of 

CH3SCH3 and CH3SCH3'̂  are used to assist the assignment and simulation of the PFI-PE 

spectra. Theoretical predictions obtained using standard ab initio program packages [22] for 

vibrational and rotational constants for small polyatomic species are known to have an accuracy 

of 10-20%. This experiment, together with previous studies [20,21,23], suggests that with an 

achievable instrumental resolution of wO.5-1.0 cm"', it is advantageous to perform PFI-PE 

measurements of polyatomic molecules at higher rotational temperatures. The rotational 

contours resolved in a rotationally hot spectrum contain more information about the rotational 

structures of the neutral and cationic species as compared to that observed in a rotationally 

cooled spectrum. 

2. Experimental and ab initio calculations 

The experimental apparatus and procedures used are similar to those described 

previoxisly [20,21,23-25]. The apparatus consists of a tunable UV or VUV laser source, a 

pulsed molecular beam source, an ion time-of-flight (TOF) mass spectrometer and an electron 

detector for PFI-PE detection. 
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2.1. VUV-PFI-PE and VUV-PIE measurements 

The VUV laser system has been described previously in detail [21^5]. Briefly, it 

comprises of one exdmer laser (Lambda Physik EMG201X two dye lasers (Lambda Physik 

FL3002) and a Xe gas cell for nonlinear optical mixing. The XeCl excimer laser output (308 

nm, 200-250 mJ) was split to pump the two dye lasers. For the present study on CH3SCH3, the 

photon energy range of interest is 69 900-71 500 cm"'. The UV frequency o)i was generated 

using coim)arin-450 dye in one of the dye lasers followed by frequency doubling with a BBOl 

crystal. Here, UV frequency was fixed at 2a)i = 89 860.6 cm"', corresponding to the two-photon 

resonance of the Xe 5p —> 6p transition. The other dye laser is tuned in the visible frequency 

(C02) range of 18 200-20 800 cm"', which was generated using Coumarin-500 dye. The visible 

laser beam is merged with the UV laser beam by a dichromic mirror. Both beams were then 

focused into the Xe gas cell (pressure « 21 Torr) by a focusing lens (focal length = 15 cm). The 

VUV frequencies (covuv) were produced by the four-wave difference frequency (covuv = 2(Di -

C02) mixing in the Xe gas cell. The gas cell has a quartz entrance window and a MgFi exit 

window, which serves to isolate the gas cell from the photoexcitation/photoionization (PEX/PI) 

chamber. With a transmission cut-off wavelength of wl 15 nnx, the MgFi window allows the 

VUV different frequencies to transmit while absorbing the VUV sum frequencies. 

A photoelectric detector made out of Cu was used to measure the VUV laser photon 

intensities. In addition to monitoring the VUV light intensities, the photoelectric detector also 

served as a light tr^ for ©1,002 and ©vuv- However, by blocking the visible laser beam, we 

found that w90 % of the photoelectric current is contributed by the UV laser ((02) beam. 
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Fortunately, this background is nearly constant because the UV frequency is fixed. We found 

that the intensi^ of the VUV difference fi:equen<^ is also nearly constant over the VUV range 

of interest here. The VUV-PFI-PE intensities presented here were not normalized by the 

corresponding VUV light intensities. 

To calibrate the laser firequencies, a small fraction of the dye laser ((02) output was 

directed into a uranium hollow cathode lamp with Ne as the buffer gas. The Ne absorption 

spectrum recorded simultaneously during the experiment provided accurate energy calibration 

of the PFI-PE spectra. The bandwidth of the dye laser is 02 cm*' for the fundamental and wO.4 

cm*' for the second hamionic output For a two-photon excitation, the resolution is *0.8 cm*'. 

Thus, the resolution for the VUV laser radiation is estimated to be <1 cm*'. The accuracy of 

photon fi^quency calibration is expected to be ±0.2 cm*'. 

The photoelectron-photoion ^paratus [20,21,23,24] used in this study consists of a 

pulsed molecular beam production system, an ion time-of-flight (TOF) mass spectrometer and 

an electron detector for PFI-PE detection. The molecular beam source chamber was pumped by 

a freon-tr^ped, 6-in. diffusion pump (pumping speed «2000 L/s), while the photoionization 

chamber and the ion TOF tube were evacuated by turbomolecular pumps with pumping speeds 

of 250 L/s and 50 L/s, respectively. During the experiment, the beam source chamber and the 

photoionization chamber were maintained at pressures of w 5 x 10*^ and « 5 x 10*^ Torr, 

respectively. 

Ion detection using the ion TOF mass spectrometer has been described previously 

[23,24]. In this study, a constant electric field at 42 and 167 V/cm was used to extract ions 
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fonned in the PEX/PI region. The PFI-PE detection scheme relies on delayed PFI of long-lived 

high-n Rydberg states populated by laser excitation at a few wave numbers below the ionization 

threshold [12-14]. In the present experiment, the firing of the excitation laser was delayed by 

580 fis with respect to the triggering pulse for opening the pulsed valve. After a typical delay of 

2.5 (js with respect to firing of the VUV laser, a forward biased pulsed electric field of 024 

V/cm and l-^s duration was used to field ionize the high-n Rydberg species as well as to extract 

the electrons to the micro-channel plate detector. Using this PFI-PE detection scheme, we 

expect to achieve a resolution of 1.0-1.5 cm"' (FWHM). 

Two digital delay units (Stanford Research DG535) control the operating sequence of 

the pulsed valve, dye laser and pulsed electric field. The signals from the electron detector (or 

ion detector) and the photoelectric VUV detector were fed into two identical boxcar integrators 

(Stanford Research SR250), which were interfaced to an IBM/PC computer. 

In this experiment, the CH3SCH3 molecular beam was produced by seeding the 

CH3SCH3 vapor (as430 Torr) at =20 ®C in 640 Torr of Ar and then expanding the mixture 

through the nozzle (diameter = 50 {im) of a pulsed valve. The CH3SCH3 sample (>99% purity) 

was obtained fix)m Aldrich and used without further purification. The molecular beam is 

skimmed by a conical skimmer (1-mm diameter, 3.8 cm fijom the nozzle) before intersecting 

with the VUV laser beam at 90° and 8.3 cm downstream firam the skimmer. 

2.2. N2P-PFI-PE measurements 

The experimental setup and conditions in the N2P-PFI-PE study [20,23,24] were the 

same as those in the VUV-PFI-PE study as described above except that only one UV dye laser 

was used for excitation. Rhodamine-560 dye was used to produce visible light in the range of 
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17 400-18 100 cm"' (552-575 nm). The second hannonic radiation in the UV range of34 800-

36 200 cm'' was generated using a BBOI ciystal. The UV laser radiation thus formed was 

focused into the PEX/PI region with a 200 mm fiised-silica focusing lens (focal length = 200 

mm). 

2.3. Ab initio calculations 

Ab initio calculations were performed on CH3SCH3 and CH3SCH3^ with the 

GAUSSIAN 94 for Windows installed at a Pentium-166 PC [22]. The G2 energies for CH3SCH3 

and CH3SCH3'̂  were calculated to obtain the adiabatic IE for CH3SCH3. The detail of the G2 

procedure has been described previously [6]. The harmonic vibrational frequencies of 

CH3SCH3* at the MP2/6-31G(d) level were scaled [26] by 0.92 and are employed for the 

assignment of the vibrational structures obtained in the PFI-PE spectra. 

The theoretical geometries of CH3SCH3 and CH3SCH3* were calculated at the 

MP2/6-31(d) level for calculation of their rotational constants. The calculated rotational 

constants for CH3SCH3 (A", B", C") and CH3SCH3* (A\ B^, C"^ are listed in Table I. At the 

MP2/6-31G(d) level of theory, both the geometries for both CH3SCH3 and CH3SCH3'̂  are 

predicted to have the Civ symmetry. The structural parameters [equilibriimi bond distances (r), 

bond angles (Z) and dihedral angles (9)] for CH3SCH3 and CH3SCH3^ are simimarized in 

Table I. The ff and represent hydrogen atoms lying in and out of the C-S-C plane, 

respectively, in CH3SCH3 and CH3SCH3^. The differences of the theoretical bond lengths 

[r(C-S), r(C-H°) and r(C-HP)], bond angles [ZC-S-C, ZS-C-H® and ZS-C-H^] and dihedral 

angles [(p(C-S-C-H®') and {p(C-S-C-H^)] for CH3SCH3 and CH3SCH3^ are also calculated in 

Table I. 
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Table 1. Calculated rotational constants (A''/A^ and C/C^, bond lengths (r), bond 
angles (Z) and dihedral angles ((p) for CHaSCHs/CHsSCHs'̂  obtained at the MP2/6-31G(d) 
level of theory. 

CH3SCH3 CH3SCH3^ A (Ion - Neutral)® 
Rotational constants" (cm"') 
A" or A"^ (cm*') 0.589 0.639 — 

B"orB''(cm*') 0.256 0.249 — 

C"orC^(cm*') 0.191 0.192 — 

Bond lengths'̂  (A) 
r(C-S) 1.804 1.784 -0.020 
r(C-H®) 1.091 1.090 -0.001 
r(C-H^) 1.092 1.095 +0.003 

Bond angles'̂  (deg.) 
ZC-S-C 98.5 102.5 +4.0 
ZS-C-H" 107.7 108.2 +0.5 
ZS-C-H^ 111.3 109.3 -2.0 

Dihedral angles'̂  (deg.) 
cp(C-S-C-H") 180.0 180.0 0.0 
(P(C-S-C-HP) 61.1 59.8 -1.3 

® Difference of the bond parameter predicted for CHsSCHs^ and CH3SCH3. 
** The b-axis is the C2 symmetry axis bisecting ZC-S-C; the a-axis is perpendicular to the 

b-axis and lies in the C-S-C plane; and the c-axis is perpendicular to the C-S-C plane. 
® Both CH3SCH3 and CH3SCH3'̂  belong to the Civ point group. Here and are 

hydrogen atoms lying on and out of the C-S-C plane, respectively. 
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3. Results and discussion 

3.1. Photoiomzation efBciency spectrum for CH3SCH3 

The adiabatic IE of CH3SCH3 has been measured to be 8.685 ± 0.005 eV (70 049 ± 

40 cm"') [27] by Watanabe et al. and 8.69±0.01 eV (70 090 ± 81 cm"') [28] by Akopyan et al. 

in previous PIE studies. The G2 calculation of the present study gives an IE(CH3SCH3) value 

of 8.71 eV (70251 cm"') and is in good agreement with these PIE measurements. Similar to the 

N2P ionization study of CH3CH2SH, efforts to measure the N2P-PIE spectrum for CH3SCH3 

were not successful. As pointed out previously [20^1], the N2P ionization requires the laser to 

be focused at the PEX/PI region. Thus, parent CH3SCH3'̂  ions initially formed by the N2P 

ionization may absorb an additional photon within the same laser pulse and result in further 

dissociation. The VUV-PIE spectrum for CH3SCH3 obtained using a dc electric fields (F) of 42 

V/cm at the PEX/PI region is shown in Fig. 1(a). The VUV-PIE spectrum obtained using a 

higher dc electric field of F = 167 V/cm is depicted in Fig. 1(b). The sharp ionization onsets 

observed in the PIE spectra indicate that the Franck-Condon factor for the ionization transition 

is favorable. Since the ionization of CH3SCH3 involves the removal of a nonbonding electron 

localized at the S atom, the geometries for CH3SCH3 and CHsSCHs"*" are expected to be similar. 

Assuming that the IE is determined by the mid-point of the rapidly rising ionization onset in the 

PIE spectrum, we obtained IE(CH3SCH3) values of 70 032 ±12 cm"' and 70 060 ±12 cm"' for 

F = 167 and 42 V/cm, respectively. The lower IE value observed for F = 167 V/cm than that for 

F = 42 V/cm is due to the Stark shift effect By linear extrapolation, the IE at zero electric field 

is determined to be 70 088 ± 12 cm"'. 
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(b) F=167V/cm 

(a) F=42V/cm 

70000 70300 70400 69900 70100 70200 

<BVUV («""') 

Fig. 1. VUV-PEE spectrum of CH3SCH3 in the photon energy range of 69 940-70 330 cm"' 
recorded using a dc electric field of (a) 42 V/cm and (b) 167 V/cm. 
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3 J2. Comparison and assignment of the VUV-PFl-PE and N2P-PFI-PE spectra for CH3SCH3 

both the VUV and N2P experiments, we have measured the PFI-PE spectrum of 

CH3SCH3 covering the energy region of69 500-72 500 cm*'. The VUV-PFI-PE and N2P-PFI-

PE spectra in the energy region of 70 000-71 600 cm"' are plotted in Figs. 2(a) and 2(b), 

respectively. The spectra of Figs. 2(a) and 2(b) represent the average of more than two 

independent scans. The signal-to-noise ratio obtained for the N2P-PFI-PE spectrum is better 

than that for the VUV-PFI-PE spectrum. Taking into account the experimental uncertainties, we 

conclude that the vibrational bands and their relative intensities observed in the two spectra are 

nearly identical. The major peaks at 70 094 cm"' observed in Figs. 2(a) and 2(b) have FWHM's 

of »20 cm*' and are assigned as the origin band, corresponding to the ionization transition 

CH3SCH3 (X'Ai; Vi = 0) -> CH3SCH3^(^^Bi; v;^ = 0) + e*. The overwhelmingly high 

intensity for the origin band is consistent with the prominent ionizing step-like onset observed 

in the PIE spectrum of Fig. 1. The widths of the vibrational PFI-PE bands resolved in Figs. 2(a) 

and 2(b) can be attributed to finite rotational excitation of the CH3SCH3 sample. As shown in 

the spectral simulation below (section in.C), the rotational temperature for CH3SCH3 achieved 

in the pulsed supersonic expansion is «30 K. 

In our recent PFI-PE study of CH3CH2SH [20], we suggested that the comparison of 

corresponding theoretical structural parameters, such as bond lengths, bond angles and dihedral 

angles, for the neutral and cation is useful in revealing the excitation vibrational modes of the 

cation. As shown in Table I, the change in r(C-S) is significantly greater than those for r(C-H®) 

and r(C-H^) upon ionization of CH3SCH3. This observation indicates that the C-S stretching 
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Fig. 2. VUV-PFI-PE spectrum (a) and N2P-PFI-PE spectrum (b) of CH3SCH3 in the photon 
energy range of 70 000-71 600 cm"'. The observed (symmetric C-S-C bending) vibrational 
progression for CHsSCHa^ is marked in (a). Other assignments of CHsSCHa^ vibrational bands 
are marked in (b). Also see Table 2 for the assignments. 
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mode is occited in CHaSCHs*^. Similarly, since finite changes are predicted for ZC-S-C, 

ZS-C-H^ and <p(C-S-C-H^) iqwn ionization of CH3SCH3, we expect that the C-S-C bending, 

S-C-H^ bending and torsional modes in CHsSCHs*^ are also excited. Assuming that the 

CH3SCH3 sample is vibrationally cold, the total vibrational wave function for CH3SCH3 in its 

ground electronic state should be totally symmetric and have the ai symmetry. In accord with 

the Franck-Condon principle, which results fix>m the Bom-Oppenheimer approximation, the 

allowed ionization transitions should give rise to CH3SCH3^ vibrational states with ai 

symmetry. Guided by the ab initio harmonic frequencies and their symmetries, we have 

satisfactorily assigned the vibrational bands resolved in the VUV-PFI-PE and N2P-PFI-PE 

spectra. The comparison between the experimental and theoretical harmonic vibrational 

frequencies is given in Table H. Here, the energies of the observed vibrational PFI-PE bands 

are measured with respect to the peak position of the origin band. The assignments of the 

vibrational bands are also marked in Figs. 2(a) and 2(b). 

According to theoretical predictions, the two lowest harmonic frequencies for 

CH3SCH3^ are the asymmetric torsional mode (vi^, predicted frequency = 57 cm"') and 

symmetric torsional mode (v2^, predicted frequency = 134 cm"'). The three lowest energy 

bands observed in the VUV-PFI-PE/N2P-PFI-PE spectra are peaked at 83/86, 130/130 and 

175/173 cm*'. If we assign the first peak at 83/86 cm"' to vi"*", the third peak at 175/173 cm"' 

should be assigned to 1\2- The second peak at 130/130 cm"' can be assigned as V2'̂ . Since 

2v2^has ai symmetry, this assignment accounts for the higher intensity observed for the peak at 

175/173 cm"' compared to those of the first and second peaks. We expect that the torsional 
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Table n. Comparison of experimental and theoretical vibrational frequencies for 
CHsSCHs^ 

Assignment^ N2P-Pn-PE VUV-Pn-PE Theoretical"''® 
(cm-')"-'' (cm*')"® (cm*') 

Vl 83 (w) 86 (w) 57 [asym. torsional (£^)] 
130 (w) 130 (w) 134 [sym. torsional (bi)] 

2v," 175 (s) 173 (s) 114 
(166) (172) 

+ 
V3 291 (s) 290 (s) 276 [C-S-C bending (ai)] 
2V,^ + V3^ 465 (w) 472 (w) 410 

(466) (463) 
2V3" 577 (w) 578 (w) 2V3^ = 552 

(582) (580) 
v/ 681 (s) 681 (s) 675 [sym C-S stretch (ai)] 
3V3" 865 (w) 865 (w) U)

 
< u> 
+
 

II 00
 

K)
 

00
 

(873) (870) 
V3 +V4 963 (s) 967 (s) 951 

(972) (971) 
+ 

V9 1042 (s) 1042 (s) 1057 [C-H bending (a,)] 
Vl^ + V9^ 1131 (w) 1127(w) 1114 

(1128) (1125) 
4V3^ (1164) (1160) 4V3'̂  = 1104 
Vll^ 1312 (s) 1316 (s) 1356 [C-H bending + wagging (ai)] 
Vl/ 1402(w) 1409 (w) 1416 [C-H bending + scissoring + 

wagging (ai)] 
+ 1 + Vl +vn (1395) (1402) 1413 

® See the text The frequencies for Vn^ are arranged in the increasing order as a fimction of n. 
** We denote "s" and "w" as strong and weak intensities, respectively 

The frequencies given in parentheses are estimated energy positions based on experimental 
observations. For 2\2 and n vs"^, the estimated values have not taken into corrections due to 
anharmonicities. 

** Calculated frequencies at the MP2/6-31G(d) level of theory. The theoretical values have 
been scaled by 0.92. 
' The cT-pIane perpendicular to the C-S-C plane is taken as the CTv in the symmetry labels. 
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potentials for CH3SCH3 and CHsSCHs"^ are highly anhamionic. As shown in the VUV-PFI-

PE/N2P-PFI-PE stiKfy of CH3CH2SH [20], more accurate predictions for ionization transitions 

associated with the CHsSCHs/CHaSCHs^ torsional modes will require the consideration of 

transitions between transitions of energy levels supported by the torsional potential for 

CH3SCH3 and those for CH3SCH3^ 

All other vibrational bands observed at higher energies can be assigned to CH3SCH3^ 

vibrational modes with ai symmetry. The three strong vibrational bands observed in the VUV-

PFI-PE/N2P-PFI-PE spectra at 290/291, 681/681 and 1042/1042 cm'' can be assigned with 

confidence to the V3^ (symmetric C-S-C bending mode), (symmetric C-S stretching mode) 

and V9^ (symmetric C-H bending mode) for CH3SCH3'̂ . These modes are of ai symmetry and 

have the respective scaled MP2/6-31G(d) harmonic fi^quencies of 276, 675 and 1057 cm"'. 

The weak structures at 578/577, 865/865 and 1127/1131 cm"' are assigned as 2v4^ 3v4^ and 

4V4'*", respectively, belonging to members of the V4* vibrational progression. The weak band at 

1127/1131 cm"' may also arise firom excitation of vi^ + V9'*^. The medium peaks observed at 

472/465, 967/963 and 1316/1312 cm*' are assigned to 2v,'̂  + V4^, + V4'̂  and vn^ (symmetric 

C-H bending and wagging mode) of CH3SCH3'̂ , respectively. Based on the observed energies 

for vi"*", V3^ and V4'*", the 2vi'̂  + v-C and + V4'̂  combination bands are expected to be at 463-

466 and 971-972 cm"', respectively. The weak peak at 1409/1402 cm"' can be attributed to 

(symmetric C-H bending + scissoring + wagging, predicted firequency = 1416 cm"') and/or vi"^ + 

vii"^. The latter combination band is expected to appear at 1399/1398 cm"*. Both the vu^ and 

vi4'̂  are of ai symmetry. Comparing the theoretical and experimental vibrational frequencies. 
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we conclude that the scaled MP2/6-31G(d) frequencies are too low for Vn^ (n < 4) and too high 

for v„^ (n = 9,11 and 14). 

3.3. Simulation of the origin VUV-PFI-PE band for CH3SCH3* 

Figure 3(a) shows an expanded view of the origin band of the VUV-PFI-PE spectrum 

for CH3SCH3 in the energy region of 70 060-70 130 cm"'. This spectrum represents the 

average of more than five independent scans. The majori^ of fine structures of Fig. 3(a) are 

reproducible. The most noticeable feature is the dip in the center of the PFI-PE band. This 

feature is contrary to the sharp peaks observed in the centers of the VUV-PFI-PE origin bands 

for CH3SH and CH3CH2SH [21]. 

Both CH3SCH3 and CH3SCH3^ are asymmetric top molecules, which are classified by 

the moment of inertia IA, IB and Ic associated with rotation aroimd the a, b and c molecular axes, 

respectively [29,30]. For CH3SCH3 and CHaSCHa"^, the symmetry axis z bisecting the ZC-S-C 

is identical to the b-axis, the molecular a-axis (symmetry axis y) is perpendicular to the b-axis 

and lies in the C-S-C molecular plane, and the molecular c-axis (symmetry axis x) is 

perpendicular to the C-S-C molecular plane. The similar theoretical rotational constants 

obtained for CH3SCH3 and CHsSCHs"*" (see Table I) are consistent with the fact that the neutral 

and cationic geometries are quite similar. As indicated above, both CH3SCH3 and CHsSCHb^ 

belong to the Civ point group. The asymmetry parameters (K) [defined as (2B" - A" - C")/(A" -

C") for the neutral and (2B* - A^ - C^/(A^ - C^ for the ion] are -0.67 for CH3SCH3 and -0.74 

for CHsSCHs"^. Since these K values are close to -1, CH3SCH3 and CHsSCHs"^ are near prolate 

top molecules. '̂*^" 
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Fig. 3. (a) The origin VUV-PFI-PE band for CHsSCHs^ in the energy range of 70 060-
70 160 cm"', (b) Simulated spectra for CH3SCH3 obtained by using a rotational temperature of 
30 K and a Gaussian width of 0.8 and 0.2 cm"' (FWHM) are mariced as curves (i) and (ii), 
respectively. The respective contributions by the Q branches (AJ = 0, AK = 0, ±1) and P plus R 
branches (AJ = ±1, AK = 0, ±1) calculated assuming a Gaussian linewidth of 0.2 cm*' (FWHM) 
are shown as curves (iv) and (iii). The calciilated contribution [Gaussian linewidth = 0^ cm"' 
(FWHM)] due to rotational branches (AJ=0, ±1; AK = ±2) is shown as curve (v). The re values 
used for (AJ = ±1, AK = 0, ±1) are 5, whereas the rs values for all other rotational branches are 
taken to be 1. 
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We have calculated the rotational energies (Ent) of these asymmetric top molecules by 

diagonalization of the Hamiltonian matrix using the symmetric top rotational basis set^ The 

asymmetric top energy levels for CH3SCH3 and CHsSCHs"^ are labeled by J'. . and J" , 
fC^Kc 

respectively. Here, J" and are good quantum numbers, v\^ch represent the respective total 

angular momentum quantum numbers for the neutral and cation. The project quantum nimibers 

Ka" (Ka^ and Kc" (Kc^ are good quantum numbers only in the prolate and oblate top limits, 

respectively. Here , we use the conventional labeling O, P, Q, R and S rotational branches for 

AJ = >r - J" = -2, -1,0, +1 and +2 transitions, respectively. 

Depending on the order of the rotational constants and the direction of the transition 

dipole moment, rotational transitions involving asymmetric top molecules are classified into 

types-a, -b and -c transitions. The CH3SCH3/CH3SCH3* system of interest here is similar to 

that of the HaO/HiO"^, which has been investigated in details [31]. The highest occupied orbital 

for H2O (CH3SCH3) has the bi symmetry and is essentially a p-type atomic orbital pointing out 

the H-O-H (C-S-C) molecular plane. Thus, the atomic selection rules A/ = ±1 are expected to 

provide an approximated description of photoionization for these molecules. Ab initio 

Schwinger variational calculations on the HiO/HiO"*^ system indicate dominant kd (/ = 2) 

photoionization continuum, in accord with the atomic model.^^ Calculations based on the 

multi-channel quantum defect theory (MQDT) show that 1 = 2 photoionization leads only to 

type-c rotational transitions, for which the selection rules are AKa = odd; and AKc = even.^^ 

Rotationally resolved VUV-PFI-PE spectrum for H2O near its ionization threshold has been 

reported previously by White and coworkers.^ Although the strongest transitions can be 
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assigned to Q'pe-c transitions, rotational structures arising fix)m type-c transitions are clearly 

observed. This observation is attributed to np-nd Rydberg series interactions induced by a finite 

anisotropy of the ion core.^®*^ In the MQDT ^jproach, the np-nd mixing could also be 

induced by a long-range dipolar coupling, which is the manifestation of the anisotropy of the 

cation potential. The types-a and -c transitions for the H20/H20'̂  system are a general 

consequence of the parity selection rule for the formation of an / = even (odd) electron. The 

ab initio Schwinger variational study of McKoy and co-workers has shown that for threshold 

photoionization of H2O the selection rules are simunarized as AK® + / = odd [36,37]. They 

show that only type-c (/ = even) and type-a (/ = odd) photoionization transitions are allowed 

independent of nuclear symmetry constraints. In view of the similarity between the H20/H20'̂  

and CHsSCHs/CHsSCHa^ systems, we may assume that the threshold photoionization of 

CH3SCH3 also follows types-a and -c transitions. However, our effort to simulate the VUV-

PFI-PE spectrum of Fig. 3(a) by assuming types-a and -c transitions was unsuccessfiil. Since 

individual rotational transitions are not resolved in the present experiment, this unsuccessful 

simulation cannot be considered as proof that that the selection rules governing photoionization 

transitions for the H20/H20"^ and CHsSCHs/CHaSCHs"^ systems are different. 

As shown in Table I, the rotational constants A" and A"*" are significantly greater than C" 

and indicating that the rotational spacings of CH3SCH3 and CHaSCHs^ are mostly 

determined by the A" and A"*" rotational constants, respectively. In the simulation present 

below, we have assumed that the photoionization transitions for the CHsSCHs/CHsSCHs^ are 

close to the prolate top limit, '̂*^" governing by AKa (= AK) only. 
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The intensi^ for a rotational transition from a neutral level | J", K#", K^") to an ionic 

state Ka", is proportional to the rotational population of the neutral molecule 

according to the Boltzmann distribution, '̂'̂  

IPE(J", Ka  ̂Kx") oc re (ZF" + l)exp[-AE„«/(kT^]. (1) 

Here, Tmc is the rotational temperature of CH3SCH3, AEmt is the rotational energy measured 

with respect to the ground rovibronic state of CH3SCH3 and re is a scaling parameter for a 

given rotational branch, which is adjusted to obtain the best fit to the experimental spectrum. 

The main assumption of this semi-empirical scheme is that the transition probabilities from 

different 1 J", ICg", Kc") levels within a rotational branch are taken to be equal and are measured 

by the scaling parameter re- In an accurate theoretical treatment, the intensity of a rotational 

transition is proportional to the product of the rotational population and the rotational line 

strength, which depends on the actual electronic matrix element that couple the initial neutral 

rotational state to the final cation rotational state plus the photoelectron state. 

Curve (i) of Figure 3(b) shows the simulated spectrum for CH3SCH3 obtained using a 

Trot value of 30 K and a Gaussian linewidth of 0.8 cm*' (FWHM). In order to compare the 

experimental and simulated features, we have also shown the simulated spectrum calculated 

using a Gaussian linewidth of 0.2 cm"' (FWHM) [see curve (ii)]. The contributions by the Q 

branches (AJ = 0; AK = 0, ±1,) and the P plus R branches (AJ = ±1; AK = 0, ±1) calculated 

assuming a Gaussian linewidth of 0.2 cm"' (FWHM) are plotted as curves (iv) and (iii) in Fig. 

3(b), respectively. The rotational branches (AJ = 0, ±1; AK = ±2) calculated using a Gaussian 

linewidth of 0.2 cm"' (FWHM) are also shown in Fig. 3(b) [see curve (v)]. These AK = ±2 
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branches are quite broad. The r^ values used for the rotational branches (AJ = ±1, AK = 0, ±1) 

are 5, as compared to the rs values of 1 for all other rotational branches. 

Although the simulated spectrum consisting of the P, Q and R rotational branches 

c^tures the main structures observed in the VUV-PFI-PE spectrum of Fig. 3(a), the width of 

such a simulated spectrum [curve (i) or (ii)] is too narrow compared to the experimental 

spectrum. We expect that higher rotational branches, i.e., I AJ | > 1 branches [not shown in 

Fig. 3(b)], also have minor contributions to the experimental spectrum. The contributions of 

the I AJ I > 1 branches should have the effect of broadening the simulated band and thus 

providing a more satisfactory fit to the experimental spectrum. The most important goal of the 

simulation is to obtain an accurate value for the adiabatic IE for CH3SCH3. Taking into account 

the uncertainty of the simulation model, the spectral simulation yields a value of 70 097.3 ± 2.0 

cm-' (8.69096 ± 0.00016 eV) for the IE of CH3SCH3. 

4. Conclusion 

We have obtained the vibrationally resolved VUV-PFI-PE and N2P-PFI-PE spectra for 

CH3SCH3 near its ionization threshold. Guided by the theoretical harmonic frequencies for 

CH3SCH3'̂ , we have assigned the photoelectron bands to excitations of the torsional (vi"^ and 

V2'̂ , C-S-C bending (v3^, C-S stretching (V4'̂  and C-H bending (yg*, vn"^, vh^ vibrational 

modes of CH3SCH3^. 

Contours of rotational branches are partially resolved in the origin band of the VUV-

PFI-PE spectrum. Using the theoretical rotational constants based on the geometries for 
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CH3SCH3 and CHaSCHs"^ predicted at the MP2/6-31G(d) level, we have calculated the 

rotational levels of these asymmetric top molecules. On the basis of a semi-empirical 

simulation, we have obtained an accurate value for the adiabatic IE of CH3SCH3. 
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CHAPTER 7. CONSTRUCTION OF A COMPREHENSIVE VACUUM 
ULTRAVIOLET LASER SYSTEM 

1. Introduction 

The study of vacuum ultraviolet (VUV) chemistry has been performed extensively. In 

the past, it mainly relied on laboratory discharge lamps' and synchrotron light sources. Due 

to advances in laser technology, generation of intense and coherent VUV light is possible.^*' 

The VUV laser system provides much higher light intensity and energy resolution than 

conventional discharge lamps. The VUV laser system provides higher energy resolution than 

the synchrotron radiation source. Also important is the cost. The major components of a 

VUV laser system are conmiercially available lasers, which are affordable to many research 

laboratories. The pulsed nature of a coherent VUV laser source is an advantage in time-of-

flight (TOF) mass spectrometry and pulsed-field-ionization photoelectron (PFI-PE) 

spectroscopy smdies.® 

As shown in Chapters 4 to 6 of this thesis, an existing apparatus has been modified to 

a VUV laser system for photoionization studies. The results are encouraging. To fully utilize 

the VUV laser technique, it is necessary to make significant modifications to the apparatus. 

Since the original apparatus was designed for multi-photon ionization (MPI) studies only, 

many desirable modifications are difficult or even impossible (e.g., due to limit space 

available). 

In spite of the emerging impact of coherent VUV laser sources in experimental 

chemical research, currently only a few laboratories in the world have a comprehensive 

tunable VUV laser system', even though many ahready have the ability to construct such 



www.manaraa.com

157 

systems. For example, in North America, to our knowledge, only the John W. Hepburn 

group at the University of Waterloo in Canada and the Michael G. White group at the 

Brookheaven National Laboratory have actively participated in research using a 

comprehensive VUV laser system. Recognizing the potential importance of the coherent 

VUV light source in many related fields, it is worthy to btiild a dedicated multi-user VUV 

laser research facility. 

The construction of such a facility has been started and I have participated in it. At 

the moment, the construction is not finished. However, I am glad that the critical parts of the 

new apparatus have been completed and are functioning very well. The final stage is expected 

to be finished soon. When operating, the new system is expected to provide many new and 

interesting research opportunities. In this chapter, the new system is introduced and the 

progress is reported. 

2. Principle of coherent VUV light generation 

The coherent frequency mixing technique is used in a VUV laser system to generate 

coherent VUV light. In the classical picture, the principle of coherent firequency mixing 

depends on the nonlinear response of a medium to applied electric fields.'" This is normally 

expressed as a series expansion in terms of the applied oscillating electric field E(a)); 

P(o)) = X̂ '̂ -E(G)) + X̂ >̂-E((D)-E(CD) + x̂ ^̂ -E(®).E(co)-E(to) + ..., (1) 

where P(q>) is the induced polarization and is the n"* order susceptibility of the medium. 

The nonlinear terms, x^^-E((o)-E(cd), x^^^ E(to)-E(ffl)-E(o)), etc., allow induced oscillating 
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polarization, which is the source of the generated Ught, to appear at frequencies other than (o, 

which is the frequency of the applied electric fields (and that of the input light). 

For second harmonic generation, °iust be nonzero, requiring a nonlinear medium 

without a center of symmetry, such as crystalline materials. Up to date, the shortest 

wavelength of laser light generated by a nonlinear process with crystalline materials is 

189 nm." To generate laser light of wavelength shorter than 189 nm by nonlinear mixing, 

gaseous atoms must be used as the nonlinear medium. 

In general, the more polarizable an atom is, the larger the value of 

Commonly used nonlinear gaseous media are rare gases (such as Kr and Xe)^ '̂ "''* and metal 

vapors (such as Hg and Mg).'̂ *'̂  Since there is a center of symmetry in gaseous atoms, all 

the even order susceptibilities, including vanish. The term is then the first nonzero 

nonlinear term in Eq. (1). 

In general, if there are three light beams, with frequencies ©1,(02 and 0)3, are merged 

in a nonlinear medium, the resultant light frequency (©s) generated due to the x^^^ term 

depends on the interaction of the three oscillating electric fields of frequencies a>i, ©2 and ©3. 

Hence, we have 

©s = ©i ± ©j ± ©k (i, j, k = 1, 2, 3) (2) 

Since ©s results from four electric fields oscillating simultaneously in the nonlinear medium, 

this type of firequency generation is called four-wave mixing. 

A special case of four-wave mixing is the third harmonic generation (THG), i.e., the 

frequency of the generated wave is three times that of the fimdamental frequency: ©s = 3©i. 



www.manaraa.com

159 

Obviously, only laser light with single fiequency (toi) is necessary in THG. The intensity of the 

generated third harmonic is described bj^ 

l3« = I x^\3(o) I' F(bAk) (3) 

where lo, is the intensity of the fundamental, N is the number density of the nonlinear medium 

and x^ \̂3g>) is the third order susceptibility for the third harmonic generation. The factor 

F(bAk) results from the macroscopic properties of the mediimi and the focussing of the 

fundamental, and it represents the phase matching between the input light and the generated 

VUV. For THG with focused laser beams at the medium, F(bAk) is non-zero only if the 

refractive index at 3© is less than that at eo. Since F(bAk) is pressure dependent (pressure 

dependence of Ak), one cannot simply increase N to improve Isco, but the N^F(bAk) term as a 

whole must be optimized. Although Eq. (3) is valid only for third harmonic generation, 

similar equations apply to the other forms of four-wave mixing. The very strong intensity 

dependence indicated by the Isa, term essentially restricts four-wave mixing to pulsed lasers, 

although it is possible to generate cw coherent VUV. 

The conversion efiBciency of the nonlinear process can be greatly increased through 

resonant enhancement of when either co, lay or 3(o absorption is resonant with a transition 

in the nonlinear mediimi. Since a resonance at co or 3o) leads to absorption of the input 

flmdamental or the generated third harmonic light, a two-photon resonance is best for 

enhancing With only one input frequency, fixing o) to make 2© correspond to a 

resonance will not allow for tuning of the generated third harmonic light because 3cd is also 

fixed. As a result, two independently-tunable flmdamental frequencies, (Oi and ©2, must be 
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used to obtain both resonant enhancement and tunability of the generated light. In this case, 

we have Oj = 2(0i ± 002. The two frequencies generated, 2ta\ + ©2 and 2(0\ - ©2, are called 

resonant sum frequency (RSFM) and resonant difference frequency (RDFM), respectively. 

The much higher conversion efiBciency in RSFM and RDFM can be rationalized with a 

quantum mechanical picture. The absorption of the first two a>i photon is a resonance process 

in RSFM and RDFM but a non-resonance process in THG. As a result, the efiBciency for the 

overall three-photon process is much higher in RSFM and RDFM than in THG (by a few 

orders of magnitude). 

The range of VUV frequency generated by THG, RSFM and RDFM depends on 

1) the value of ©i which depends on the nonlinear medium used, 2) the range of C02 which can 

be produced by an individual dye laser system, and 3) the phase matching condition in the 

mixing process chosen. The phase matching condition is the same for THG and RSFM but 

less stringent for RDFM. In practice, the most convenient methods for generating VUV light 

are: 65.5-100 nm by RSFM in pulsed jets of iCr and Xe; 109-190 nm by RDFM in gas cells of 

Kr and Xe; 100-109 nm (the gap between the RSFM and RDFM ranges of Kr and Xe) by 

THG in pulsed jets of Kr and Ar. The range of 105-190 imi can also be generated by RSFM 

and RDFM in gas cells of Hg and Mg vapors. These practical schemes allow the generation 

of coherent VUV laser light in the wavelength range of 65.5-190 nm without gap. Depending 

on the wavelength region, the VUV light intensity in the range lO'-lO''* photon/pulse can be 

achieved.^ '̂'̂ "'* 
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3. Components of the system 

In Fig.l, the schematic setup of the system is shown. Basically, commercial lasers are 

used to generate coherent light with frequencies cdi and coz- The two laser beams are combined 

with a dichromatic mirror and brought into the jet chamber for VUV light generatioiL The 

outgoing beam consists of a mixture of light (with frequencies of cdi, o>2 and 2q)i ± a>2, for 

example) and are separated at the grating in the monochromator chamber. The light of desired 

frequency (either 2toi + <02 or Icai - (02) goes to the main chamber. At the same time, the 

molecular beam comes from the source chamber in the direction perpendicular to the VUV 

laser beam direction. Ions and electrons formed from ionization are extracted upward to the 

mass spectrometer and downward to the electron detector, respectively (see Fig. 2). A light 

detector is located downstream from the photoionization/photoexcitation (PI/PEX) region to 

measure the VUV light intensity for spectrum normalization. 

In the following part, different components of the system are described in detail. The 

differences between the new system and the modified apparatus (which was used to perform 

the VUV experiments in Chapters 4 to 6 in this thesis) will also be discussed. 

3.1. Lasers 

There are three lasers in the system: one pump laser and two dye lasers. The pump 

laser is a Nd-YAG laser (GCR-290, Spectra Physics) with output of about 1.6 J/pulse at 1064 

nm. A harmonic generation unit is added to generate harmonic light for pumping the dye 

lasers. The second, third and fourth harmonics (532, 355 and 226 nm, respectively) can be 
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Fig. 1. Schematic setup of the new VUV laser system. 
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generated (though the third and fourth harmonics cannot be generated at the same time). 

The dye lasers can be pumped by either 532 or 355 mn, depending on the range of the 

outpiits desired (which in turn depends on the range of the VUV desired). In terms of 

pumping light intensi^, the worst case would be pimiping both dye lasers at 355 nm. The 

maximimi output at 355 imi is about 480 mJ/pulse, i.e., each dye laser is pumped by light 

energy of240 mJ/ptilse. For the purpose of comparison, the maximum pump beam power of 

the modified apparatus [by a ten-year old excimer laser (EMG 201 MSG, Lambda Physik) at 

308 tmi] is usually 250-300 mJ/pulse, i.e., each dye laser is pumped by light energy of >150 

mJ/pulse. Also, the use of longer wavelength pump beam (355 versus 308 nm) on dye laser 

pumping results in higher conversion efficiency (by a low percentage). Therefore, the new 

system is expected to provide higher light intensity from the dye lasers. 

Both dye lasers (LDL252, LAS) of the new system are equipped with harmonic 

generation units to produce continuously tunable laser light from the UV to the IR region. 

One of the harmonic generation units laser is simply a second harmonic generation unit 

whereas the other one consists of a second harmonic generation unit and a sum frequency 

unit. Such an assembly allows a dye laser to generate laser light of wavelength down to 189 

nm by mixing the Nd-YAG laser fundamental output and the second harmonic of the dye 

laser fundamental output'' 

On the other hand, the dye lasers of the modified apparatus (FL3002, Lambda Physik) 

are pumped by 308-nm light and the shortest wavelength of photons is only 198 nm (by 

frequency-tripling of dye laser output at 594 nm). 
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Also important in high-resolution experiment is the bandwidth of the laser light. The 

LDL252 dye lasers used in the new system have ultra-narrow bandwidth of about 0.04 cm"', 

cf. 0.2 cm"* of the one in the modified apparatus. As a result, the bandwidth of the VUV light 

generated in the new system is estimated to be (2x2x0.04)^ +0.04^ = 0.16 cm"'. 

3.2. Optics components 

A couple of standard commercial optics components are used in the new system. 

Among them, two are specially designed for utilizing a light beam of two different 

frequencies, and they require extra description. 

The first one is a dichromatic mirror. The content of the surface coating is designed in 

such a way that the mirror has high reflectivity for one frequency but high transmission for the 

other one. In our case, the mirror is highly reflective for a narrow range of an UV frequency 

(oi) but has a broad-band transmission for the visible region (covering (D2). In this way, the two 

laser beams with different frequencies can be combined, and this kind of mirror is used in both 

the new system and the modified apparatus. 

The second one is an achromatic focussing lens to focus the combined laser beam into 

the jet chamber. An achromatic focussing lens is an assembly of a convex lens and a concave 

lens of different curvatures and usually with coated lens surfaces. In the modified apparatus, 

a simple focussing lens is used. One of the problems of the simple focussing lens is that it 

has different focal lengths for the different components in the combined beam because the 

refractive index is different for different frequencies. Hence, the two components are 



www.manaraa.com

166 

focussed at different spots. On the other hand, the achromatic focussing lens corrects this 

problem. When the two components are focused at the same spot, the VUV generation is 

expected to be more efBcient 

3.3. Jet-mixing chamber 

A pulsed valve inside the jet-mixing chamber introduces the nonlinear mediiun (Kr or 

Xe) as a free jet for VUV generation. The gas density of the non-linear medium near the tip is 

very high and it is the location at which the combined laser beams are focused. At the 

opposite port is a liquid-Nz cooled trap (see Fig. 1) which allows recycling of the expensive 

Kr and Xe gases. A 210 Us turbo pimip maintains the vacuum. The pressure of the chamber 

is in the range of 10"^ Torr. 

Gas ceils of nonlinear media has been used in previous experiments performed with 

the modified apparatus (see Chapters 4-6). The best window material for light transmission 

is LiF, which has a cut-ofiF of 105 nm. Therefore, the use of gas cells limits the wavelength of 

the VUV light generated to be >105 nm. On the other hand, the jet-mixing chamber can be 

connected to the downstream chambers without a window, and the wavelength of the VUV 

light generated can be extended to <105 nm. 

3.4. Monochromator chamber 

The VUV light generated in the jet mixing chamber (together with lights of other 

frequencies) goes into the monochromator chamber (Model 343, McPherson) to have the 

undesired wavelengths removed before entering the main chamber (see Fig. 1). The vacuimi 
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of the chamber is maintained at about 10'̂  Toir by a 520 Us turbo pump. Inside the 

monochromator chamber is a piadnum coated 142° toroidal grating v^ch also re-focuses 

dif&acted light 12.59 inches downstream. The groove density is 275 lines/mm. At first 

order, the maximum wavelength for dif&action is estimated to be about 500 mn (though the 

range of optimimi efficiency is stated as 50-300 nm by the vendor). 

The grating can be scanned either manually or by a remote computer. In remote 

control mode, the electrical steeping motor for the grating is comiected to the grating 

controller (supplied with the grating), which is coimected to a personal computer via RS232 

interface. Remote control commands of the grating system are described in detail in the 

instruction manual provided by the vendor. In principle, the grating scans synchronously 

with the VUV wavelength. Preliminary testing suggests that it is unnecessary. In practice, 

the VUV range scanned each experiment is very narrow and the grating, if scanning 

synchronously with the VUV wavelength, virtually does not move. Therefore, it is only 

necessary to set the grating position at the begiiming (via manual control or interactive 

computer control) and leave it unchanged during the experiment. 

Note that a light-dispersing device such as a monochromator chamber of this kind does 

not exist in the modified apparatus. The monochromator chamber in the new system serves 

three purposes: 1) The grating separates the VUV light firom the undesired UV and visible 

lights; 2) The VUV light coming out after jet mixing is always diverging (because focusing at 

the nonlinear gas jet is necessary), so it is an advantage to have a grating to re-focus the VUV 

light at the PI/PEX region; 3) The monochromator chamber pumped with a powerful turbo 
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pump plays an important role in differential pumping and maintains a vacimm gradient 

between the jet-mixing chamber (10"* Torr) and the main chamber (10*^ - 10"* Torr). 

Upon dif&action, the VUV light intensity is reduced due to light absorption on the 

grating surface and light dif&action at the tmdesired orders (e.g. zeroth order, second order 

and so on when first order dif&action is used). The specified first order diffraction efiBciency 

is 8% at 250.0 nm, 11.5% at 161.0 nm and 19% at 121.6 nm. For wavelengths shorter than 

100 nm, the diffraction efficiency is expected to be higher than 20%. Although a significant 

portion of VUV light intensity is lost, the re-focusing property of the grating used confines all 

remaining photons into a small region comparable to the size of the molecular beam. This 

makes the use of VUV light more efficient than a non-diffracted but diverging beam. 

3.5. Source chamber, main chamber and extension chamber 

The source chamber, main chamber and extension chamber are comiected in series 

and perpendicular to the diffracted VUV light path from the monochromator chamber (see 

Fig. 1). Gaseous sample is introduced into the source chamber through a pulsed valve. The 

molecular beam is skimmed before entering the main chamber. The skimmed beam is 

intercepted perpendicularly at the center of the main chamber (the PI/PEX region) by the 

VUV light The photoionization region is inside an electrostatic lens stack. Ions and 

electrons are extracted to the reflectron mass spectrometer and electron detector, respectively 

(also see the section below and Fig. 2). Molecules not ionized fiy straight through the main 

chamber into the extension chamber and are pumped away. 
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The main chamber contains a window for laser alignment There is also a window to 

perform pre-ionization processes on the molecular beam. For example, a separate laser may 

be used to dissociate the parent molecules into radicals which are photoionized by the VUV 

laser. 

The pumping utilities of the new system are much more powerful than those of the 

modified ^paratus. The source chamber of the new system is pumped by a 10-in. diffusion 

pump (5300 L/s, VHS-10, Varian) backed up by an ejector pump in series with a roots blower 

and a mechanical pump. On the other hand, the source chamber of the modified apparatus is 

pumped by a 6-in. difl^on (pumping speed = 2000 L/s) backed by a mechanical pump. The 

main chamber and the extension chamber of the new system are pumped together by a 520 

L/s turbo pump, whereas the main chamber of the modified apparatus is pimiped by a 330 L/s 

turbo pump. Therefore, a much better vacuum is expected for the new system. 

The main chamber of the new system is much bigger than that of the modified 

apparatus. This allows a more complicated apparatus inside the chamber. For example, a 

longer lens stack is used in the new system for ion and electron extraction. The extension 

chamber, which does not exist in the modified apparatus, reserves room for future uses. 

3.6. Reflectron mass spectrometer and electron detector 

A lens stack is installed at the center of the main chamber at which VUV PI/PEX 

occurs. Lenses above and below the PI/PEX region extract ions and electrons, respectively. 

A double-stage micro-channel plate (MCP) for electron detection is located at the bottom of 

the lens stack. 
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For mass spectrometric studies, a reflectron tube assembly is installed on top of the 

main chamber (see Fig. 2). The vacuum is maintained at 10"® Torr with a 230 Us turbo 

pump. At the entrance, there is an X-Y deflector (consisting of two pairs of parallel 

electrostatic lens) for steering the ion beam into the drift mbe. A lens stack is installed at the 

top of the assembly to reflect the ions to the end of the other leg of the assembly (refer to 

Fig. 2 for the schematic ion path) at which another double-stage MCP detector is located. 

The orientation of the lens stack can be adjusted via two mechanical feed-throughs on the top 

flange. In this way, the reflected beam direction can be adjusted for better resolution and/or 

signal intensity. When the high-resolution of the reflectron technique is not necessary, e.g., 

when searching the signal at the very begiiming of the experiment, linear mass spectrometric 

detection is necessary due to higher signal intensity and easier operation. For this purpose, a 

third double-stage MCP detector is located above the reflector lens stack. When doing linear 

mass spectrometry, the reflector lens stack is turned off and the ions can go straight into the 

third detector. 

The total length of the reflectron drift tube is 2 m, which is about double of that of the 

linear drift tube used in the modified apparatus. The longer total flight path increases the 

resolution of the TOF spectra and hence heavier molecules (such as biomolecules) can be 

studied. 
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3.7. Light detector 

A detector for VUV light detection collects the VUV photons about 3.5" downstream 

from the PI/PEX region (see Fig. 1). VUV photons hitting the tungsten disc surface of the 

detector create photoelectrons which are collected by a positively biased copper anode. 

The light detector previously used in the modified apparatus has a copper wedge to 

collect VUV photons. The use of tungsten for the cathode has two advantages over the 

copper. First of all, tungsten is more inert than copper towards air oxidation and thus has a 

more stable photoelectric yield. Secondly, the photoelectric yield of tungsten in the range 60 

- 90 nm is 14 - 15%, which is slightly higher than that of copper (11 - 13%).'' 

3.8. Data acquisition system 

The ion, electron and ion signals are fed into one of the dye laser controllers which 

also serve to acquire direct current signals. When necessary, the signals are amplified and/or 

gated before being fed into the controller. Data acquisition is controlled by the WAVESCAN 

program provided by the dye laser company (LAS) installed on a 486 PC via GFEB 

connection. The software also synchronizes the scanning of one of the dye lasers (for 0)2 laser 

light). The time sequence of laser firing, pulse valve opening, etc. are handled by two pulse 

generators (DG353, Stanford Research) which provide triggering pulses at user-specified time 

intervals. 
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4. Corrent status of the system 

The thiee lasers (one Nd-YAG and two dye lasers) have been tested and the 

manufacturer specifications are met All the vacuum chambers are assembled and the jet-

mixing, monochromator and main chambers are carefully aligned. Components in various 

vacuum chambers (such as pulsed values, lens stack and grating) have been installed. 

Vacuimi-maintaining system including turbo pumps, diffusion pump and backup pumps have 

also been hooked up and are working normally. 

We are now attempting to generate VUV light using Xe as a nonlinear medium in the 

range 102.4-104.1 nm. Oxygen molecules, whose ionization energy (97348 cm"', 

corresponding to 102.72 nm) is within this range,^° will be used as a starting target for the 

photoionization and photoelectron studies. This species has been studied by Tonkyn et. al."° 

with a VUV laser system and the results can be compared. 

5. Further prospective of the system 

5.1. Photoionization and photodissociation smdies of radical 

The new system will be used mainly on radical systems in VUV photoionization mass 

spectrometric and PFI-PE spectroscopic studies. Up to date, many radicals, some of which 

are simple, have not been smdied thoroughly and their properties are still not well-known. 

The sulfur-containing radicals of interest are SO, CS, CH3S, CH3CH2S, CH2CH2SH, 

CH3SS and CgHsS, which can be prepared in abimdance by 193- or 248-nm photodissociation 

(PD) of SO2, CS2. CH3SH (or CH3SCH3), CH3CH2SCH2CH3, CH3CH2SH, HSCH2CH2SH, 

CH3SSCH3 and CsHsSH (or C6H5SCH3), respectively. The conventional PI and PE 
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spectroscopic studies on are SO, CS, CH3S, CH3CH2S and CH3SS have been carried out in 

our group before and much understanding of the formation of these radicals have been 

gained.^ '̂̂  

We are also interested in some oxygen-containing radicals such as CH3O, CH2CH3O, 

CH3CH2O, CH3CO and CeHsCO. Most of them are important intermediates in combustion 

processes. These radicals have not been studied extensively. High-resolution laser-induced 

fluorescence (LIF) studies have been performed on CH30^ '̂̂ ^ and CH3CH20^® by Miller and 

co-workers. The PI spectrum of CH3O has also been obtained in a conventional VUV PI 

mass spectrometric experiment. '̂ To our knowledge, however, the remaining radicals 

(CH2CH3O, CH3CH2O, CH3CO and C6H5CO) have never been subjected to PI and PE 

smdies. Previous studies show that the methoxy (CH3O) and ethoxy (CH3CH2O) radicals can 

be prepared by photolysis of the corresponding nirite^^^ whereas the vinoxy (C2H3O) radical 

can be formed by photolysis of ethyl vinyl etherRecently, in a 193- and 248-nm PD 

experiment, we foimd that the CsHsCO and CH3CO radicals can be generated from 

C6H5C0CH3. '̂ 

Another interesting class of radicals is the halogen-containing radicals such as CCI2, 

CBr2, CClBr, CFBr, CHBr2 and CF3O. They are relevant to atmospheric degradation of halo-

hydrocarbons. An important reason for choosing these radicals is that LIF jet studies on them 

have been made^ '̂̂ ^ and thus the recipes are known for preparing these radicals. They can 

prepared by photolysis or pyrolysis of the appropriate halogen-containing precursor 

molecules in supersonic jets. It is certain that many other halo-hydrocarbons can be prepared 

by similar methods. 
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The radicals listed above are by no means exhaustive but simply representative 

systems of our recent interest The actual direction of our studies will be guided by our 

experience and the scientific pay-off. 

Understanding the UV and VUV PD processes involved in the formation of these 

radicals represents an important step for future reactivity studies of these radicals. 

Furthermore, the detailed characterization of these radicals by high-resolution PI and PE 

spectroscopy will lead to new experimental schemes for state-selection (rotational, 

vibrational and electronic) of their cations for ion-molecule reaction studies. We have 

considerable interest in these topics and plan to pursue these studies in due course. 

5.2 Collaborations with other research groups in Iowa State University 

The VUV coherent light is an invaluable light source in studies of other fields under 

vacuum environment. This will certainly induce collaborations with the other research 

groups, especially those in the Iowa State University. For this purpose, we have designed the 

new system as a multi-user facility for the other groups to install specific devices necessary 

for their studies. 

At the moment, several plans have been outlined. One of them is to combine VUV 

laser ionization and matrix-assisted laser desorption (MALA) for mass spectrometric analysis 

of biomolecules. Because of the soft ionization and prompt fragmentation induced by VUV 

excitation, the combination of VUV PI and MALA is potentially useful for mass and 

structural analysis of biomolecules. Another interesting class of experiments is the 

modification and ablation of surfaces by tunable VUV laser radiation. The high energy VUV 
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radiation is expected to lead to new surface morphologies as well as chemically active sites. 

We plan to investigate the changes in both physical and chemical properties of fluorinated 

polymers induced by irradiation with VUV photons. The change in surface topography and 

gaseous fragments can be examined by atomic force microscopy and mass spectrometry, 

respectively. The VUV modified Ag and Au surfaces will also be used as substrates for 

surface enhanced Raman scattering studies. Finally, we will incorporate VUV PI and 

excitations to inductively-coupled plasma (ICP) and ICP-MS for elemental analyses to 

investigate the energy transfer mechanisms concerning vaporization, atomization and 

ionization in ICP and to modification and ablation of surfaces by tunable VUV laser 

radiation. 
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CHAPTER 8. GENERAL CONCLUSIONS 

Single- and multi-photon ionization techniques have been employed for the 

photoionization and pulsed field ionization (PFI) studies of the following organsuliur species: 

CH3SH, CH3CH2SH, CH3CH2S and CS2. Accurate ionization energy (IE) have been 

determined for these neutral species using high-resolution lasers and PFI scheme. The 

uncertainty in ionization energy is a few wavenumbers. Infonnation of the energy levels for 

the neutrals and/or the corresponding cations have been retrieved from the experimental 

results. In these studies, the resolution of PFI spectra by single vacuum ultraviolet photon 

ionization is higher than that by multi-photon ionization. The PFI spectra obtained are very 

similar in the two photoexcitation schemes, while the photoionization efficiency spectra 

could not be obtained in every case when using the multi-photon scheme. The VUV single-

photon ionization/excitation technique is therefore considered cleaner, but MPI method is 

less demanding in terms of experimental setup. Hence the latter is a simple but more popular 

tool to be used in related fields. 
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APPENDIX 

COMPUTER PROGRAM USTING 

In this appendix, the contents of two programs are listed. The first (shown in pp. 181-

183) was used in the paper in Chapter 2 for calculating energy levels for a rotor potential energy 

surface. The second (shown in pp. 184-192) was used in the pliers in Chapters 5 and 6 for 

simulation of rotational profile in single-photon pulsed-field ionization spectra. 

The programs are written for the Mathcad Plus 6.0 (Professional Version). Note that it 

is an interactive environment and the programming statements and graphics are put together. 

Therefore, the content is reproduced here as it ̂ ypears in the software. 
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Motecul*: CHyCHjSH. C-S bond rotation. MP2IB-316(d,p) 

Sin* functions, sin(n^) wtwrs n • 1,2,..., Nbasis, ars used for the odd eigsnffunctions. A 
constant tann and cosins functions, cos(n^) wfiara n • 1,2, (NiMwis-1), ars used for tfie 
aven eisanfunctions. Note tliattiie normalization constant for ttie constant tenn diffiars 
from thoee for tiie coeine functions. 
A file with 2 columns is read in: 

(angle) (energy in hart) 
0 ^76.8... 

60 -476.8... 

The matrix will be sorted in ascending order of angle. 

Define constants and conversion factors 

red 1=1.68 
red I 

kcal to wavenos349.7SS Nbasis hSO hart to Iccals627.S09SS T= 0.029 

ftead in energy vs angle: 

M = READPRNCNEUTRAL) M = csort(M. 0) globalmin = min(M'̂ ' ̂ ) 

:= - globalmin) •hart_to_kcai 

Extend PES from po, 180<^ to [-180», 540°] for fitUng. 
Aasumlng periodicity • 360^, symmetric about 180^. 

i : = 0..20 PES; o :=-(M2o-i.o) 

i =21..40 PESjo=Mj_joo PES;, 

i =41..80 PESj o :=PESj_^ 0+360 PESj , :=PESj_^ , 
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ConwrtangtofhMnctogtDrad: PES := PES 
180 

Cubic spilns fitting 

ANGLE =PES*^^ ENERGY =PES'^*'' 

V(^) =iiiterp<vs.ANGLE.ENERGY,^) 

vs =csplme(ANGLE,ENERGY) 

0 =0,0^„360 

Craato T. V and H matrix 

OWGIN = I TOL =0.0001 k = 1 ..2 Nbasis -i- I 

r* 
VcoSjj: V(*).cos((k-lH)d* 

i =l..Nbasis j =l..Nbasis 

Toj . =i^ T-8(i.j) VOj . =0 Voj . i>j,Vo. ..l-(VcoS|._., - VcoS;^.^,) 

Tc; . =(i-ir T-8(i,j) Vcj . =0 

i =2..Nbasis V«|.| =—-Vcos,^, 

Ve, J =--Vcos, 
* 

V«i., 

i =2..Nbasis j =2..Nbasis Vc, . . = i|i>j.V,^_..i.(Vcos,j_., +VcoSj^._,^ 

Hb :=To i- Vo Ao :=eigeiivals(Ho) Xo :=sort(Ao) 

He:=Te-t-Ve Ac =eigeiivsls(He) Xe:=sort(Ae) 
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Now h«v« a lookatth««^|MivaluM: (in kcalftnol) Nbasis =S0 

0311 0.899 1.272 1.413 1.8 2.049 2.41 2.831 3308 3.847 4.444 5.1 5.814 6386 7.416 

Xe^=i 
10367 0.689 1.089 1.207 1.603 1.922 2.045 2.428 2.832 3308 3.847 4.444 5.1 5.814 

Eigenvalues in cm'^: 

X 
kcal to waveno-Xo ^ 1 

108.78 314.45 444.89 4943 629716J9 842.92 990.06 1.16-10'' 

kcal to waveno-Xe =1 
128.28 241.12 380.9 42231 560.81 672.23 71536 849.07 990 J9 

Produce coefF-matrix sueli that nr * C * x wliera both m and x ara column vectors. 

k = 1.. Nbasis coefifoi**^ = eigenvec^Ho, X.o^ j Co = coeffo^ 

coeffe =eigenvec^He,Xe|^j Ce =coefIe 

Wavefunctions so otitained: (\|r in deg) 

Nbasis 

H'oCni.*) =y X! 
V* n=I 

Ve(m,*) =-^ 

Nbasis 

— Ce ,-t- Ce coJ (n-l)-f— ^ m.l ^ m.n | • 
n = 2 

Write coefficients onto files: 

WRITEPRN(SINCOEFF) = Re(Co) WRITEPRN(COSCOEFF) = Re(Ce) 
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Stimuiatlon for CH^SH. 

Expt ;=READFRN(ExptDitil) 

TOL ;=0.000001 EngCaiivs0^9S03877 

Aa3^0 BsO.43 C30.41 

Ae^s3.46 Cj^50.44 

kTsEngConv-T kT^lSSOl 

Dcfin* Hamittonian matriea afamants: 

Hii(A,B,C,J.Ki,ig) := if Kisig' 

J - KJ) (J 1- iq + I).(J - Kg - 1).(J -I- Kj -I- 2) ifKi«Kj^.2 

i- KjHJ -Kji-l ) (J i- Kj - 1 )•(J - Kj i- 2) ifKi«Kj-2 

0 otherwise 

Dafina a procadura to work out the anargy lavais fortha aaymmatric tops using A. B, C: 

EiigLev(A,B,C) ;= teii]pQ«-0 

for Je 1..J mm 

for 16 0..2-J 

for je 0..2-J 

temp#-stadcC temp, s(»t( Re( eigeiwals( H) ) ) ) 

temp 

NeuT teinpQ*-0 

for Je 

for ie 0..2-J 

duminyg*-! 

tempi- stack( temp, dummy) 

temp 

NeuEng;=EagLev( A, B t C) 

NeuPop: (2-NeuJ -t-1 )-e 

NeuEng 

Kr 
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Population of neutral r.w.t J. 

PopJ ;= for ie O..J^ 

teinpj*-0 

for j6 1 

tempj«-teinpj -t- NeuPopj 

temp 

max temp«-(0 0) 

for i € 0..1ast(PopJ) 

temp*- (i PopJj) if Poprj>tempo 1 

temp otherwise 

temp. '0.0 

Jmax = ̂  

i :=0..iast(PopJ) 

PopI: to 

Poplulation in energy. 

SortNeuEng = csort( augment(NeuEng, NeiiPop), 0) 

(^max ^°Pmax) ~ temp4-(0 0) 

for 16 0..1ast(NeuPop) 

temp*— ^SortNeuEngj q SortNeuEngj , j if SortNeuEngj |>tempQ , 

temp otherwise 

temp 

Emax = 8-399 

NeuEngCum = tempfj*-SortNeuEngj, j 

for ie 1..rows( SortNeuEng) - 1 

tempj«-tempj_, i- SortNeuEngj , 

temp 

NeuEngLst = iast(NeuEng) 
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'trim' i«-0 

\^e 
NeuEngCunij 

NeuEngCuin^,.P^„ 

1 
SortNeuEng^ g 

=(1 - PoPtfare) 

E^ = 113^ 

Ka = tempQ4-0 

for Je 

dunimyQ4-0 

temp«-stack( temp, diunniy) 

for ie 1..J 

dummyQ«-i 

temp«- stack(temp, dummy) 

temp«- stack(temp, dummy) 

temp 

Kc = tempQ4-0 

for 

for 16 J,J- I.. 1 

dummyQ«— i 

temp4—stack( temp, dummy) 

temp«— stack( temp, dummy) 

dummyQ*—0 

temp«-stack( temp, dunmiy) 

temp 

Create a matrix containing energy, J, Kat Kc and population for each level, in ascending 
order of energy and energy smaller than or equal to E(p,„. 

I#—U 
for j E 0.. last(NeuEng) 

if NeuEngj^trun 

tempj gt-NeuEng^ 

temp; NeuJ; 

tempj 

temPi 3«-K<^ 

temp- .«-NeuPopi 

• • « 1 
temp 
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Crsato a aimilar matrfc* for the cation ^without truncation In anergy): 

CatEng :=EngLev(Apat,Bcat'Ccat) 

Cation :=csort(aiigiiieiit(aiigment(augment(CatEng,NeuJ),Ka),Kc), 1) 

Define a procedure to calculate the line epectrum with AJ ae a parameter 

Bianch(AJ) = k<-0 

CatLst*- rows( Cation) - I 

for i€ 0„iows(Neiitral) - 1 

J4—Neutral; 

cat*^ 

i . i  

Jt-AJ 

^ ,^cat)-(Jcat-Cationo ,) 

j«-0 

wiiile G<CatLst)-^Cationj cat) 

if Cation. 

temi^ Q«-Cationj ^ - Neutralj ^ 

tempi^ i«-Neutralj ^ 

temp^ 2»-Cationj 2" Neutralj 2 

temp|^ 3«- Cationj 3 - Neutralj 3 

tcmp^^ -Neutral; i . l  

temp|j j«-Cationj , - Neutral^ , 

k«-k+ 1 

jH -t-1 
temp 
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D«fin« a procadura to axtraet a aub-braneh from a branch obtainad with tha "BranchC^)" 
procadura with apacific AlC To gat tha Unas for AK^ > 100, aat AKCoi s 2 and AK «100. 
For AKc • 64. aat AKCol • 3 and AK* 64. By running thia procaduraa two timaa. tranaition 
iinaa with twth Al^ « 2 and AK^ * 3 can ba obtainad. 

SiibBranch(Brandi,/iKCoI.AK) = i^O 
for j e 0..rows(Branch) - 1 

if Branch^ 

for kE 0..S 

-Branch; j.k 

temp 

Craata 0-, P-, Q-, R- and S-branch (AJ = -2, -1.0, and •<•2, raapactivaiy): 

O :=Branch(-2) P =Branch(-l) Q =Branch(0) 

R =Branch(l) S;=Branch(2) 

Pick up AK. = -2, -1,0, and *2 in O-branch: 

Oo '=SubBranch(0,2,-2) 

Or =SubBranch( 0,2,1) 

Pick up AK, 

Po =SubBranch(P,2,-2) 

Pr =SubBranch(P,2,l) 

Op =SiibBranch(0,2,-1) 

Os =SubBrancfa(0,2,2) 

Pp = SubBranch(P, 2, -1) 

Ps:=SubBranch(P, 2,2) 

Oq =SubBrancfa( 0,2,0) 

' -2, -1,0, +1 and *2 in P-branch: 

Pq =SubBranch(P,2,0) 

Pick up Al^ s -2, -1,0, +1 and *2 in Q-branch: 

Qo ;=SubBranch(Q,2,-2) Qp =SubBranch(Q,2.-1) Qq =SufaBrancii(Q.2,0) 

Qr =SubBTanch(Q,2,l) Qs =SubBrancl!(Q,2,2) 
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Pick up AK, * -2, -1,0, •(•1 and <*>2 in R-branch: 

Ro ;=SiibBnmcfa(R,2,-2) Rp :=SidtBiaiicfi(R,2,-l) Rq :=SubBianch(R,2,0) 

Rr :=SubBiaiidi(R,2,l) Rs :=SubBrandi(R,2,2) 

Picic up AK, 3 -2, -1,0. -*-1 and *2 in S-branch: 

So :=SubBranch(S.2,-2) Sp =SubBranch(S,2,-l) Sq =SubBranch(S,2,0) 

Sr =SubBranch(S,2.1) Ss -SiibBnuicb(S,2.2) 

Define another iiateh of constants wrhich are necessary for spectrum plotting and line 
spectrum convolution: 

LmWidH2 IP i ^762523 

ExptLst;=rows(Expt) - 1 ExptLst = 600 Exp^o.o 76209.95 Exptp^,^ „ = 76305.90 

SpectSrt =ExptQ o-IPj SpectEnd :=Exptg^ IP j SpectStep 

SpectSrt =SpectSrt SpectEnd ;=SpectEnd SpectStep =SpectStep 

The followings are NOT parameters. Dont touch them. 

S p e c t L s t : = c e t t f ~  S p e c t S r t \  S p c c t S t c p  = 0 . 1 6  S p c c t L s t = 6 0 0  
\ SpectStep I 
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Create a grid table for lines to be convoluted. 

GridTab := ten4>Q4-0.1-SpectStq) 

thres^O.OOl 

41ii(2) 
a* 

LinWid^ 

X4—0 

i*-I 
tempj4-l 

while temp-^thres 

x«-x-htenipQ 

1 
2 •Itx temp. 4-e 

temp 

Create a look-up teble for the Gaussian function. 

LkupGsn(x) = tdx«- floor! 
|x| 

[GiridTabn 

temp«- iGridTabjjjj^j if iclx<last(GridTab) 

|o otherwise 

temp 
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Convolution procodura: puttho branch or sub-branch ss parametsr 

ConvoI(M) := for ie O..SpcctLst 

temp.*-0 

for 16 0..rows(M)- 1 

GsnHfWid*- Iengdi(GridTab)-GridTabg 

LftTail«-Mi 0- GsnHfWid 

Low4-floor| 

Low 

LfiTail - SpectSrt 

SpectStq) 

Low if Low>0 

0 otherwise 

Low templjo 

RgtTail«—M| Q -t GsnHfWid 

\ SpectStep 

Ifigfa4- ifigh if High<SpectLst 

SpectLst otherwise 

tempi f j«-High 

templj 2«-(Ifigh- Low)-SpectStep 

if (Low<SpectLst)-(Higfa>0) 

Eng«-SpectSrt-t- Low-SpectStep 

for j 6 Low.. High 

tempj4—tempj -i- Mj ,-LkupGsn^Eng -

Eng«- Eng -i- SpectStep 

temp 

Convolute branches: 

QoSpect =ConvoI(Qo) 

QrSpect =ConvoI(Qr) 

PpSpect :=Convol(Pp) 

PoSpect =Coiivol(Po) 

RpSpect :=ConvoI(Rp) 

RoSpect = Convol(Ro) 

QpSpect =Convol(Qp) 

QsSpect = ConvoKQs) 

PqSpect =Convol(Pq) 

PsSpect = Convoi(Ps) 

RqSpect =Convol(Rq) 

RsSpect =Convol(Rs) 

QqSpect =Convoi(Qq) 

PrSpect =Convol(Pr) 

RrSpect =ConvoI(Rr) 
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OoSpect =Coiivol(Oo) 

OrSpect =C(»vol(Or) 

SoSpect :=CoiiVDi(So) 

SrSpect :=C(»voKSr) 

OpSpect :=Coavol(Op) 

OsSpect:=Coavol(Os) 

SpSpect :=Coiivoi(Sp) 

SsSpect :=Convol(Ss) 

OqSpect =Coavol(Oq) 

SqSpect :=CotivoI(Sq) 

Craats final spectra: 

ExptSpect;=Expt^'^-t-2770 IP j =76252^0 IP2 =0 IP=IPi-IP2 

IP =76252^0 

o:p:q:ns s K2:K1:K0:K1:K2; 0:P:Q:R:S ' J2:J1:J0:J1^I2. 

KG -1 KI ;=1^ K2;=0.7 J0 ;=1 JI=I.l J2 =0.6 

POl =Jl (Kl PpSpect-i- KO PqSpecH- Kl-PrSpect) P2 = Jl (K2-PoSpecti- K2 PsSpect) 

QOl =JO-(KI-QpSpect-i-KO-QqSpect-t-Kl-QrSpect) Q2 :=J0-(K2-QoSpect-t-K2-QsSpect) 

ROI = Jl (Kl RpSpect-t- KO RqSpecti- KI RrSpect) R2 :=Jl-(K2 R0Spect^ K2 RsSpect) 

OOI2 :=J2-(K2-OoSpect-t- Kl'OpSpect-t- KO-OqSpect-t- KI-OrSpect -t K2-OsSpect) 

S012 :=J2-(K2-SoSpect-f- Kl-SpSpect-i- KO-SqSpect-i- KI-SrSpect-h K2-SsSpect) 

Stimul =P01 +- QOl -t- ROI P2i- Q2i- R2 + 0012-f- S012 

maxl =inax(ExptSpect) inax2 :=aiax(Stimul) Stimul :=Stimul-^^^ 
max2 

i =0..rows(Stimul) - 1 j = 0..rows(Expt) - 1 

800 

600 

400 
Stimul. 

ExptSpect. 

200 

0 

-200 20Q 
-4«-4O.»-35.»-30.7-25.fi-20.S-I5.*-l0J-5J -O.I 5 lO.I 15J 20J 25.4 30.5 35.6 40.7 45.8 50.9 56 

(SpectStt-t-i SpeetStqi),Expt. g-IP,(SpeclSit-i-t SpectSlep) 
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